
11

Data Mining:
Concepts and Techniques

(3rd ed.)

— Chapter 5 —

Jiawei Han, Micheline Kamber, and Jian Pei

University of Illinois at Urbana-Champaign &

Simon Fraser University

©2010 Han, Kamber & Pei. All rights reserved.

22

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

33

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplierc

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

4

Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
1. (9/15, milk, Urbana, Dairy_land)
2. (9/15, milk, Urbana, *)
3. (*, milk, Urbana, *)
4. (*, milk, Urbana, *)
5. (*, milk, Chicago, *)
6. (*, milk, *, *)

all

time,item

time,item,location

time, item, location, supplier

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

55

Cube Materialization:
Full Cube vs. Iceberg Cube

 Full cube vs. iceberg cube
compute cube sales iceberg as

select month, city, customer group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

 Computing only the cuboid cells whose measure satisfies the
iceberg condition

 Only a small portion of cells may be “above the water’’ in a
sparse cube

 Avoid explosive growth: A cube with 100 dimensions

 2 base cells: (a1, a2, …., a100), (b1, b2, …, b100)

 How many aggregate cells if “having count >= 1”?

 What about “having count >= 2”?

iceberg
condition

6

Iceberg Cube, Closed Cube & Cube Shell

 Is iceberg cube good enough?

 2 base cells: {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube have if having count(*) >=

10? Hint: A huge but tricky number!

 Close cube:

 Closed cell c: if there exists no cell d, s.t. d is a descendant of c,

and d has the same measure value as c.

 Closed cube: a cube consisting of only closed cells

 What is the closed cube of the above base cuboid? Hint: only 3

cells

 Cube Shell

 Precompute only the cuboids involving a small # of dimensions,

e.g., 3

 More dimension combinations will need to be computed on the fly

For (A1, A2, … A10), how many combinations to compute?

77

Roadmap for Efficient Computation

 General cube computation heuristics (Agarwal et al.’96)

 Computing full/iceberg cubes: 3 methodologies

 Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande &

Naughton, SIGMOD’97)

 Top-down:

 BUC (Beyer & Ramarkrishnan, SIGMOD’99)

 H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

 Integrating Top-Down and Bottom-Up:

 Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

 High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB’04)

 Computing alternative kinds of cubes:

 Partial cube, closed cube, approximate cube, etc.

88

General Heuristics (Agarwal et al. VLDB’96)

 Sorting, hashing, and grouping operations are applied to the dimension

attributes in order to reorder and cluster related tuples

 Aggregates may be computed from previously computed aggregates,

rather than from the base fact table

 Smallest-child: computing a cuboid from the smallest, previously

computed cuboid

 Cache-results: caching results of a cuboid from which other

cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the

same time to amortize disk reads

 Share-sorts: sharing sorting costs cross multiple cuboids when

sort-based method is used

 Share-partitions: sharing the partitioning cost across multiple

cuboids when hash-based algorithms are used

99

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

1010

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

1111

Multi-Way Array Aggregation

 Array-based “bottom-up” algorithm

 Using multi-dimensional chunks

 No direct tuple comparisons

 Simultaneous aggregation on multiple

dimensions

 Intermediate aggregate values are re-

used for computing ancestor cuboids

 Cannot do Apriori pruning: No iceberg

optimization

1212

Multi-way Array Aggregation for Cube
Computation (MOLAP)

 Partition arrays into chunks (a small subcube which fits in memory).

 Compressed sparse array addressing: (chunk_id, offset)

 Compute aggregates in “multiway” by visiting cube cells in the order

which minimizes the # of times to visit each cell, and reduces

memory access and storage cost.

What is the best

traversing order

to do multi-way

aggregation?

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60

13

Multi-way Array Aggregation for Cube
Computation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

 The best order is
the one that
minimizes the
memory
requirement and
reduced I/Os

14

Multi-way Array Aggregation for Cube
Computation (2-D to 1-D)

1515

Multi-Way Array Aggregation for Cube
Computation (Method Summary)

 Method: the planes should be sorted and computed

according to their size in ascending order

 Idea: keep the smallest plane in the main memory,

fetch and compute only one chunk at a time for the

largest plane

 Limitation of the method: computing well only for a small

number of dimensions

 If there are a large number of dimensions, “top-down”

computation and iceberg cube computation methods

can be explored

1616

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

1717

Bottom-Up Computation (BUC)

 BUC (Beyer & Ramakrishnan,
SIGMOD’99)

 Bottom-up cube computation

(Note: top-down in our view!)

 Divides dimensions into partitions
and facilitates iceberg pruning

 If a partition does not satisfy
min_sup, its descendants can
be pruned

 If minsup = 1 compute full
CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

1818

BUC: Partitioning

 Usually, entire data set
can’t fit in main memory

 Sort distinct values

 partition into blocks that fit

 Continue processing

 Optimizations

 Partitioning

 External Sorting, Hashing, Counting Sort

 Ordering dimensions to encourage pruning

 Cardinality, Skew, Correlation

 Collapsing duplicates

 Can’t do holistic aggregates anymore!

1919

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

2020

Star-Cubing: An Integrating Method

 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes

by Top-Down and Bottom-Up Integration, VLDB'03

 Explore shared dimensions

 E.g., dimension A is the shared dimension of ACD and AD

 ABD/AB means cuboid ABD has shared dimensions AB

 Allows for shared computations

 e.g., cuboid AB is computed simultaneously as ABD
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

 Aggregate in a top-down

manner but with the bottom-up

sub-layer underneath which will

allow Apriori pruning

 Shared dimensions grow in

bottom-up fashion

2121

Iceberg Pruning in Shared Dimensions

 Anti-monotonic property of shared dimensions

 If the measure is anti-monotonic, and if the

aggregate value on a shared dimension does not

satisfy the iceberg condition, then all the cells

extended from this shared dimension cannot

satisfy the condition either

 Intuition: if we can compute the shared dimensions

before the actual cuboid, we can use them to do

Apriori pruning

 Problem: how to prune while still aggregate

simultaneously on multiple dimensions?

2222

Cell Trees

 Use a tree structure similar

to H-tree to represent

cuboids

 Collapses common prefixes

to save memory

 Keep count at node

 Traverse the tree to retrieve

a particular tuple

2323

Star Attributes and Star Nodes

 Intuition: If a single-dimensional

aggregate on an attribute value p

does not satisfy the iceberg

condition, it is useless to distinguish

them during the iceberg

computation

 E.g., b2, b3, b4, c1, c2, c4, d1, d2,

d3

 Solution: Replace such attributes by

a *. Such attributes are star

attributes, and the corresponding

nodes in the cell tree are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

2424

Example: Star Reduction

 Suppose minsup = 2

 Perform one-dimensional

aggregation. Replace attribute

values whose count < 2 with *. And

collapse all *’s together

 Resulting table has all such

attributes replaced with the star-

attribute

 With regards to the iceberg

computation, this new table is a

lossless compression of the original

table

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

A B C D Count

a1 b1 * * 1

a1 b1 * * 1

a1 * * * 1

a2 * c3 d4 1

a2 * c3 d4 1

2525

Star Tree

 Given the new compressed

table, it is possible to

construct the corresponding

cell tree—called star tree

 Keep a star table at the side

for easy lookup of star

attributes

 The star tree is a lossless

compression of the original

cell tree

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

2626

Star-Cubing Algorithm—DFS on Lattice Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2

2727

Multi-Way Aggregation
ABC/ABCABD/ABACD/ABCD

ABCD

2828

Star-Cubing Algorithm—DFS on Star-Tree

ABC/ABCABD/ABACD/ABCD

ABCD

2929

Multi-Way Star-Tree Aggregation

 Start depth-first search at the root of the base star tree

 At each new node in the DFS, create corresponding star tree that are descendants of

the current tree according to the integrated traversal ordering

 E.g., in the base tree, when DFS reaches a1, the ACD/A tree is created

 When DFS reaches b*, the ABD/AD tree is created

 The counts in the base tree are carried over to the new trees

 When DFS reaches a leaf node (e.g., d*), start backtracking

 On every backtracking branch, the count in the corresponding trees are output, the

tree is destroyed, and the node in the base tree is destroyed

 Example

 When traversing from d* back to c*, the a1b*c*/a1b*c* tree is output and

destroyed

 When traversing from c* back to b*, the a1b*D/a1b* tree is output and

destroyed

 When at b*, jump to b1 and repeat similar process

ABC/ABCABD/ABACD/ABCD

ABCD

3030

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

3131

The Curse of Dimensionality

 None of the previous cubing method can handle high
dimensionality!

 A database of 600k tuples. Each dimension has
cardinality of 100 and zipf of 2.

3232

Motivation of High-D OLAP

 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP:
A Minimal Cubing Approach, VLDB'04

 Challenge to current cubing methods:

 The “curse of dimensionality’’ problem

 Iceberg cube and compressed cubes: only delay the
inevitable explosion

 Full materialization: still significant overhead in
accessing results on disk

 High-D OLAP is needed in applications

 Science and engineering analysis

 Bio-data analysis: thousands of genes

 Statistical surveys: hundreds of variables

3333

Fast High-D OLAP with Minimal Cubing

 Observation: OLAP occurs only on a small subset of

dimensions at a time

 Semi-Online Computational Model

1. Partition the set of dimensions into shell fragments

2. Compute data cubes for each shell fragment while

retaining inverted indices or value-list indices

3. Given the pre-computed fragment cubes,

dynamically compute cube cells of the high-

dimensional data cube online

3434

Properties of Proposed Method

 Partitions the data vertically

 Reduces high-dimensional cube into a set of lower

dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction

 Offers tradeoffs between the amount of pre-processing

and the speed of online computation

3535

Example Computation

 Let the cube aggregation function be count

 Divide the 5 dimensions into 2 shell fragments:

 (A, B, C) and (D, E)

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

3636

1-D Inverted Indices

 Build traditional invert index or RID list

Attribute Value TID List List Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

3737

Shell Fragment Cubes: Ideas

 Generalize the 1-D inverted indices to multi-dimensional

ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while

retaining the inverted indices

 For example, shell

fragment cube ABC

contains 7 cuboids:

 A, B, C

 AB, AC, BC

 ABC

 This completes the offline

computation stage

111 2 3 1 4 5a1 b1

04 5 2 3a2 b2

24 54 5 1 4 5a2 b1

22 31 2 3 2 3a1 b2

List SizeTID ListIntersectionCell

3838

Shell Fragment Cubes: Size and Design

 Given a database of T tuples, D dimensions, and F shell

fragment size, the fragment cubes’ space requirement is:

 For F < 5, the growth is sub-linear

 Shell fragments do not have to be disjoint

 Fragment groupings can be arbitrary to allow for

maximum online performance

 Known common combinations (e.g.,<city, state>)

should be grouped together.

 Shell fragment sizes can be adjusted for optimal balance

between offline and online computation

O T
D

F

(2F 1)

3939

ID_Measure Table

 If measures other than count are present, store in

ID_measure table separate from the shell fragments

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

4040

The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k fragments

(P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists in bottom-

up fashion.

4141

Frag-Shells (2)

A B C D E F …

ABC
Cube

DEF
Cube

D Cuboid

EF Cuboid

DE Cuboid

Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions

4242

Online Query Computation: Query

 A query has the general form

 Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

 For example, returns a 2-D

data cube.

a1,a2, ,an :M

3 ? ? * 1: count

4343

Online Query Computation: Method

 Given the fragment cubes, process a query as

follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each

fragment from the fragment cube

3. Intersect the TID lists from each fragment to

construct instantiated base table

4. Compute the data cube using the base table with

any cubing algorithm

4444

Online Query Computation: Sketch

A B C D E F G H I J K L M N …

Online

Cube

Instantiated

Base Table

4545

Experiment: Size vs. Dimensionality (50
and 100 cardinality)

 (50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.

 (100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.

4646

Experiments on Real World Data

 UCI Forest CoverType data set

 54 dimensions, 581K tuples

 Shell fragments of size 2 took 33 seconds and 325MB

to compute

 3-D subquery with 1 instantiate D: 85ms~1.4 sec.

 Longitudinal Study of Vocational Rehab. Data

 24 dimensions, 8818 tuples

 Shell fragments of size 3 took 0.9 seconds and 60MB

to compute

 5-D query with 0 instantiated D: 227ms~2.6 sec.

4747

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data Cube

Technology

 Sampling Cube

 Ranking Cube

 Multidimensional Data Analysis in Cube Space

 Summary

4848

Processing Advanced Queries by
Exploring Data Cube Technology

 Sampling Cube

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling

Cube: A Framework for Statistical OLAP over

Sampling Data”, SIGMOD’08

 Ranking Cube

 D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k

queries with multi-dimensional selections: The

ranking cube approach. VLDB’06

 Other advanced cubes for processing data and queries

 Stream cube, spatial cube, multimedia cube, text

cube, RFID cube, etc. — to be studied in volume 2

4949

Statistical Surveys and OLAP

 Statistical survey: A popular tool to collect information
about a population based on a sample

 Ex.: TV ratings, US Census, election polls

 A common tool in politics, health, market research,
science, and many more

 An efficient way of collecting information (Data collection
is expensive)

 Many statistical tools available, to determine validity

 Confidence intervals

 Hypothesis tests

 OLAP (multidimensional analysis) on survey data

 highly desirable but can it be done well?

5050

Surveys: Sample vs. Whole Population

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population

5151

Problems for Drilling in Multidim. Space

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population but samples could be small

when drilling to certain multidimensional space

5252

OLAP on Survey (i.e., Sampling) Data

Age/Education High-school College Graduate

18

19

20

…

 Semantics of query is unchanged

 Input data has changed

5353

Challenges for OLAP on Sampling Data

 Computing confidence intervals in OLAP context

 No data?

 Not exactly. No data in subspaces in cube

 Sparse data

 Causes include sampling bias and query
selection bias

 Curse of dimensionality

 Survey data can be high dimensional

 Over 600 dimensions in real world example

 Impossible to fully materialize

5454

Example 1: Confidence Interval

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old high-school students?

Return not only query result but also confidence interval

5555

Confidence Interval

 Confidence interval at :

 x is a sample of data set; is the mean of sample

 tc is the critical t-value, calculated by a look-up

 is the estimated standard error of the mean

 Example: $50,000 ± $3,000 with 95% confidence

 Treat points in cube cell as samples

 Compute confidence interval as traditional sample set

 Return answer in the form of confidence interval

 Indicates quality of query answer

 User selects desired confidence interval

5656

Efficient Computing Confidence Interval Measures

 Efficient computation in all cells in data cube

 Both mean and confidence interval are algebraic

 Why confidence interval measure is algebraic?

is algebraic

where both s and l (count) are algebraic

 Thus one can calculate cells efficiently at more general

cuboids without having to start at the base cuboid each

time

5757

Example 2: Query Expansion

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old college students?

5858

Boosting Confidence by Query Expansion

 From the example: The queried cell “19-year-old college
students” contains only 2 samples

 Confidence interval is large (i.e., low confidence). why?

 Small sample size

 High standard deviation with samples

 Small sample sizes can occur at relatively low dimensional
selections

 Collect more data?― expensive!

 Use data in other cells? Maybe, but have to be careful

5959

Intra-Cuboid Expansion: Choice 1

Age/Education High-school College Graduate

18

19

20

…

Expand query to include 18 and 20 year olds?

6060

Intra-Cuboid Expansion: Choice 2

Age/Education High-school College Graduate

18

19

20

…

Expand query to include high-school and graduate students?

6161

Query Expansion

62

Intra-Cuboid Expansion

 Combine other cells’ data into own to “boost”
confidence

 If share semantic and cube similarity

 Use only if necessary

 Bigger sample size will decrease confidence interval

 Cell segment similarity

 Some dimensions are clear: Age

 Some are fuzzy: Occupation

 May need domain knowledge

 Cell value similarity

 How to determine if two cells’ samples come from
the same population?

 Two-sample t-test (confidence-based)

6363

Inter-Cuboid Expansion

 If a query dimension is

 Not correlated with cube value

 But is causing small sample size by drilling down too

much

 Remove dimension (i.e., generalize to *) and move to a

more general cuboid

 Can use two-sample t-test to determine similarity

between two cells across cuboids

 Can also use a different method to be shown later

6464

Query Expansion Experiments

 Real world sample data: 600 dimensions and
750,000 tuples

 0.05% to simulate “sample” (allows error checking)

6565

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data Cube

Technology

 Sampling Cube

 Ranking Cube

 Multidimensional Data Analysis in Cube Space

 Summary

66

Ranking Cubes – Efficient Computation of
Ranking queries

 Data cube helps not only OLAP but also ranked search

 (top-k) ranking query: only returns the best k results

according to a user-specified preference, consisting of (1)

a selection condition and (2) a ranking function

 Ex.: Search for apartments with expected price 1000 and
expected square feet 800

 Select top 1 from Apartment

 where City = “LA” and Num_Bedroom = 2

 order by [price – 1000]^2 + [sq feet - 800]^2 asc

 Efficiency question: Can we only search what we need?

 Build a ranking cube on both selection dimensions and
ranking dimensions

67

Sliced Partition

for city=“LA”

Sliced Partition

for BR=2

Ranking Cube: Partition Data on Both
Selection and Ranking Dimensions

One single data

partition as the template

Slice the data partition

by selection conditions

Partition for

all data

68

Materialize Ranking-Cube

tid City BR Price Sq feet Block ID

t1 SEA 1 500 600 5

t2 CLE 2 700 800 5

t3 SEA 1 800 900 2

t4 CLE 3 1000 1000 6

t5 LA 1 1100 200 15

t6 LA 2 1200 500 11

t7 LA 2 1200 560 11

t8 CLE 3 1350 1120 4

Step 1: Partition Data on

Ranking Dimensions

Step 2: Group data by

Selection Dimensions

City

BR

City & BR

3 421

CLE

LA

SEA

Step 3: Compute Measures for each group

For the cell (LA)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Block-level: {11, 15}

Data-level: {11: t6, t7; 15: t5}

69

Search with Ranking-Cube:
Simultaneously Push Selection and Ranking

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

Without ranking-cube: start

search from here
With ranking-cube:

start search from here

Measure for LA:

{11, 15}

{11: t6,t7; 15:t5}

11

15

Given the bin boundaries,

locate the block with top score

Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]

70

Processing Ranking Query: Execution Trace

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

With ranking-

cube: start search

from here

Measure for LA:

{11, 15}

{11: t6,t7; 15:t5}

11

15

f=[price-1000]^2 + [sq feet – 800]^2
Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]

Execution Trace:

1. Retrieve High-level measure for LA {11, 15}

2. Estimate lower bound score for block 11, 15

f(block 11) = 40,000, f(block 15) = 160,000

3. Retrieve block 11

4. Retrieve low-level measure for block 11

5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!

71

Ranking Cube: Methodology and Extension

 Ranking cube methodology

 Push selection and ranking simultaneously

 It works for many sophisticated ranking functions

 How to support high-dimensional data?

 Materialize only those atomic cuboids that contain

single selection dimensions

 Uses the idea similar to high-dimensional OLAP

 Achieves low space overhead and high

performance in answering ranking queries with a

high number of selection dimensions

7272

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

7373

Multidimensional Data Analysis in
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes

74

Data Mining in Cube Space

 Data cube greatly increases the analysis bandwidth

 Four ways to interact OLAP-styled analysis and data mining

 Using cube space to define data space for mining

 Using OLAP queries to generate features and targets for
mining, e.g., multi-feature cube

 Using data-mining models as building blocks in a multi-
step mining process, e.g., prediction cube

 Using data-cube computation techniques to speed up
repeated model construction

 Cube-space data mining may require building a
model for each candidate data space

 Sharing computation across model-construction for
different candidates may lead to efficient mining

75

Prediction Cubes

 Prediction cube: A cube structure that stores prediction
models in multidimensional data space and supports
prediction in OLAP manner

 Prediction models are used as building blocks to define
the interestingness of subsets of data, i.e., to answer
which subsets of data indicate better prediction

76

How to Determine the Prediction Power
of an Attribute?

 Ex. A customer table D:

 Two dimensions Z: Time (Month, Year) and Location
(State, Country)

 Two features X: Gender and Salary

 One class-label attribute Y: Valued Customer

 Q: “Are there times and locations in which the value of a
customer depended greatly on the customers gender
(i.e., Gender: predictiveness attribute V)?”

 Idea:

 Compute the difference between the model built on
that using X to predict Y and that built on using X – V
to predict Y

 If the difference is large, V must play an important role
at predicting Y

77

Efficient Computation of Prediction Cubes

 Naïve method: Fully materialize the prediction
cube, i.e., exhaustively build models and evaluate
them for each cell and for each granularity

 Better approach: Explore score function
decomposition that reduces prediction cube
computation to data cube computation

7878

Multidimensional Data Analysis in
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes

7979

Complex Aggregation at Multiple
Granularities: Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries
involving multiple dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the
maximum price in 2010 for each group, and the total sales among
all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

 Continuing the last example, among the max price tuples, find the
min and max shelf live, and find the fraction of the total sales due
to tuple that have min shelf life within the set of all max price
tuples

8080

Multidimensional Data Analysis in
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes

8181

Discovery-Driven Exploration of Data Cubes

 Hypothesis-driven

 exploration by user, huge search space

 Discovery-driven (Sarawagi, et al.’98)

 Effective navigation of large OLAP data cubes

 pre-compute measures indicating exceptions, guide

user in the data analysis, at all levels of aggregation

 Exception: significantly different from the value

anticipated, based on a statistical model

 Visual cues such as background color are used to

reflect the degree of exception of each cell

8282

Kinds of Exceptions and their Computation

 Parameters

 SelfExp: surprise of cell relative to other cells at same

level of aggregation

 InExp: surprise beneath the cell

 PathExp: surprise beneath cell for each drill-down

path

 Computation of exception indicator (modeling fitting and

computing SelfExp, InExp, and PathExp values) can be

overlapped with cube construction

 Exception themselves can be stored, indexed and

retrieved like precomputed aggregates

8383

Examples: Discovery-Driven Data Cubes

8484

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

8585

Data Cube Technology: Summary

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP with Shell-Fragments

 Processing Advanced Queries by Exploring Data Cube Technology

 Sampling Cubes

 Ranking Cubes

 Multidimensional Data Analysis in Cube Space

 Discovery-Driven Exploration of Data Cubes

 Multi-feature Cubes

 Prediction Cubes

8686

Ref.(I) Data Cube Computation Methods

 S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the
computation of multidimensional aggregates. VLDB’96

 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD’97

 K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.. SIGMOD’99

 M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries efficiently.
VLDB’98

 J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube:
A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge
Discovery, 1:29–54, 1997.

 J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex Measures. SIGMOD’01

 L. V. S. Lakshmanan, J. Pei, and J. Han, Quotient Cube: How to Summarize the Semantics of a Data Cube,
VLDB'02

 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: A Minimal Cubing Approach, VLDB'04

 Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimensional
aggregates. SIGMOD’97

 K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB’97

 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integration,
VLDB'03

 D. Xin, J. Han, Z. Shao, H. Liu, C-Cubing: Efficient Computation of Closed Cubes by Aggregation-Based Checking,
ICDE'06

8787

Ref. (II) Advanced Applications with Data Cubes

 D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. OLAP over
uncertain and imprecise data. VLDB’05

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A Framework for Statistical OLAP over
Sampling Data”, SIGMOD’08

 C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text Cube: Computing IR measures for
multidimensional text database analysis. ICDM’08

 D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data
warehouses. SSTD’01

 N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for efficient
implementation of spatial data cubes. IEEE Trans. Knowledge and Data Engineering, 12:938–
958, 2000.

 T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multidimensional space. VLDB’09

 T. Wu, D. Xin, and J. Han. ARCube: Supporting ranking aggregate queries in partially materialized
data cubes. SIGMOD’08

 D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional selections:
The ranking cube approach. VLDB’06

 J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms via wavelets.
CIKM’98

 D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for OLAP on multi-dimensional text
databases. SDM’09

88

Ref. (III) Knowledge Discovery with Data Cubes

 R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

 B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. VLDB’05

 B.-C. Chen, R. Ramakrishnan, J.W. Shavlik, and P. Tamma. Bellwether analysis: Predicting global
aggregates from local regions. VLDB’06

 Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-Dimensional Regression Analysis of
Time-Series Data Streams, VLDB'02

 G. Dong, J. Han, J. Lam, J. Pei, K. Wang. Mining Multi-dimensional Constrained Gradients in Data
Cubes. VLDB’ 01

 R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-structural
databases. PODS’05

 J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27:97–107, 1998

 T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. Data
Mining & Knowledge Discovery, 6:219–258, 2002.

 R. Ramakrishnan and B.-C. Chen. Exploratory mining in cube space. Data Mining and Knowledge
Discovery, 15:29–54, 2007.

 K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities.
EDBT'98

 S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes.
EDBT'98

 G. Sathe and S. Sarawagi. Intelligent Rollups in Multidimensional OLAP Data. VLDB'01

Surplus Slides

89

9090

Chapter 5: Data Cube Technology

 Efficient Methods for Data Cube Computation
 Preliminary Concepts and General Strategies for Cube Computation

 Multiway Array Aggregation for Full Cube Computation

 BUC: Computing Iceberg Cubes from the Apex Cuboid Downward

 H-Cubing: Exploring an H-Tree Structure

 Star-cubing: Computing Iceberg Cubes Using a Dynamic Star-tree
Structure

 Precomputing Shell Fragments for Fast High-Dimensional OLAP

 Data Cubes for Advanced Applications

 Sampling Cubes: OLAP on Sampling Data

 Ranking Cubes: Efficient Computation of Ranking Queries

 Knowledge Discovery with Data Cubes

 Discovery-Driven Exploration of Data Cubes

 Complex Aggregation at Multiple Granularity: Multi-feature Cubes

 Prediction Cubes: Data Mining in Multi-Dimensional Cube Space

 Summary

9191

H-Cubing: Using H-Tree Structure

 Bottom-up computation

 Exploring an H-tree

structure

 If the current

computation of an H-tree

cannot pass min_sup, do

not proceed further

(pruning)

 No simultaneous

aggregation

 all

 A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

9292

H-tree: A Prefix Hyper-tree

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hhd TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …

… …

Header

table

9393

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …
… …

Attr. Val. Q.I. Side-link
Edu …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)

Computing Cells Involving “City”

9494

Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link

Edu. Sum:2285 …

Hhd. …

Bus. …

… …

Jan. …

Feb. …

Mar. …

… …

Tor. …

Van. …

Mont. …

… …

1. Roll up quant-info
2. Compute cells involving

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes
top-k avg threshold, so does its parents.
No binning is needed!

9595

Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
Mar …
… …
Tor …
Van …
Mon …
… …

Check header table directly

Q.I.

