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Data Cube: A Lattice of Cuboids
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Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
1. (9/15, milk, Urbana, Dairy_land) 
2. (9/15, milk, Urbana, *) 
3. (*, milk, Urbana, *) 
4. (*, milk, Urbana, *)
5. (*, milk, Chicago, *)
6. (*, milk, *, *) 
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Cube Materialization: 
Full Cube vs. Iceberg Cube

 Full cube vs. iceberg cube
compute cube sales iceberg as

select month, city, customer group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

 Computing only the cuboid cells whose measure satisfies the 
iceberg condition 

 Only a small portion of cells may be “above the water’’ in a 
sparse cube

 Avoid explosive growth: A cube with 100 dimensions

 2 base cells: (a1, a2, …., a100), (b1, b2, …, b100)  

 How many aggregate cells if “having count >= 1”? 

 What about “having count >= 2”?

iceberg 
condition
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Iceberg Cube, Closed Cube & Cube Shell

 Is iceberg cube good enough?

 2 base cells:  {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube have if having count(*) >= 

10? Hint: A huge but tricky number!

 Close cube:

 Closed cell c: if there exists no cell d, s.t. d is a descendant of c, 

and d has the same measure value as c.

 Closed cube: a cube consisting of only closed cells

 What is the closed cube of the above base cuboid?  Hint: only 3 

cells

 Cube Shell

 Precompute only the cuboids involving a small # of dimensions, 

e.g., 3

 More dimension combinations will need to be computed on the fly

For (A1, A2, … A10), how many combinations to compute?
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Roadmap for Efficient Computation

 General cube computation heuristics (Agarwal et al.’96)

 Computing full/iceberg cubes: 3 methodologies 

 Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande & 

Naughton, SIGMOD’97) 

 Top-down: 

 BUC (Beyer & Ramarkrishnan, SIGMOD’99)

 H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

 Integrating Top-Down and Bottom-Up: 

 Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

 High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB’04)

 Computing alternative kinds of cubes: 

 Partial cube, closed cube, approximate cube, etc.
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General Heuristics (Agarwal et al. VLDB’96)

 Sorting, hashing, and grouping operations are applied to the dimension 

attributes in order to reorder and cluster related tuples

 Aggregates may be computed from previously computed aggregates, 

rather than from the base fact table

 Smallest-child: computing a cuboid from the smallest, previously 

computed cuboid

 Cache-results: caching results of a cuboid from which other 

cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the 

same time to amortize disk reads

 Share-sorts: sharing sorting costs cross multiple cuboids when 

sort-based method is used

 Share-partitions: sharing the partitioning cost across multiple 

cuboids when hash-based algorithms are used
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Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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Multi-Way Array Aggregation

 Array-based “bottom-up” algorithm

 Using multi-dimensional chunks

 No direct tuple comparisons

 Simultaneous aggregation on multiple 

dimensions

 Intermediate aggregate values are re-

used for computing ancestor cuboids

 Cannot do Apriori pruning: No iceberg 

optimization
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Multi-way Array Aggregation for Cube 
Computation (MOLAP)

 Partition arrays into chunks (a small subcube which fits in memory). 

 Compressed sparse array addressing: (chunk_id, offset)

 Compute aggregates in “multiway” by visiting cube cells in the order 

which minimizes the # of times to visit each cell, and reduces 

memory access and storage cost.

What is the best 

traversing order 

to do multi-way 

aggregation?

A

B
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Multi-way Array Aggregation for Cube 
Computation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

 The best order is 
the one that 
minimizes the 
memory 
requirement and 
reduced I/Os
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Multi-way Array Aggregation for Cube 
Computation (2-D to 1-D)
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Multi-Way Array Aggregation for Cube 
Computation (Method Summary)

 Method: the planes should be sorted and computed 

according to their size in ascending order

 Idea: keep the smallest plane in the main memory, 

fetch and compute only one chunk at a time for the 

largest plane

 Limitation of the method: computing well only for a small 

number of dimensions

 If there are a large number of dimensions, “top-down” 

computation and iceberg cube computation methods 

can be explored



1616

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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Bottom-Up Computation (BUC)

 BUC (Beyer & Ramakrishnan, 
SIGMOD’99) 

 Bottom-up cube computation 

(Note: top-down in our view!)

 Divides dimensions into partitions 
and facilitates iceberg pruning

 If a partition does not satisfy 
min_sup, its descendants can 
be pruned

 If minsup = 1  compute full 
CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning

 Usually, entire data set                                 
can’t fit in main memory

 Sort distinct values

 partition into blocks that fit

 Continue processing

 Optimizations

 Partitioning

 External Sorting, Hashing, Counting Sort

 Ordering dimensions to encourage pruning

 Cardinality, Skew, Correlation

 Collapsing duplicates

 Can’t do holistic aggregates anymore!
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Data Cube Computation Methods
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Star-Cubing: An Integrating Method

 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes 

by Top-Down and Bottom-Up Integration, VLDB'03

 Explore shared dimensions

 E.g., dimension A is the shared dimension of ACD and AD

 ABD/AB means cuboid ABD has shared dimensions AB

 Allows for shared computations

 e.g., cuboid AB is computed simultaneously as ABD
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

 Aggregate in a top-down 

manner but with the bottom-up 

sub-layer underneath which will 

allow Apriori pruning

 Shared dimensions grow in 

bottom-up fashion
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Iceberg Pruning in Shared Dimensions

 Anti-monotonic property of shared dimensions

 If the measure is anti-monotonic, and if the 

aggregate value on a shared dimension does not 

satisfy the iceberg condition, then all the cells 

extended from this shared dimension cannot 

satisfy the condition either

 Intuition: if we can compute the shared dimensions 

before the actual cuboid, we can use them to do 

Apriori pruning

 Problem: how to prune while still aggregate 

simultaneously on multiple dimensions?
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Cell Trees

 Use a tree structure similar 

to H-tree to represent 

cuboids

 Collapses common prefixes 

to save memory

 Keep count at node

 Traverse the tree to retrieve 

a particular tuple
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Star Attributes and Star Nodes

 Intuition: If a single-dimensional  

aggregate on an attribute value p

does not satisfy the iceberg 

condition, it is useless to distinguish 

them during the iceberg 

computation

 E.g., b2, b3, b4, c1, c2, c4, d1, d2, 

d3 

 Solution: Replace such attributes by 

a *.  Such attributes are star 

attributes, and the corresponding 

nodes in the cell tree are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1
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Example: Star Reduction

 Suppose minsup = 2

 Perform one-dimensional 

aggregation.  Replace attribute 

values whose count < 2 with *.  And 

collapse all *’s together

 Resulting table has all such 

attributes replaced with the star-

attribute

 With regards to the iceberg 

computation, this new table is a 

lossless compression of the original 

table

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

A B C D Count

a1 b1 * * 1

a1 b1 * * 1

a1 * * * 1

a2 * c3 d4 1

a2 * c3 d4 1
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Star Tree

 Given the new compressed 

table, it is possible to 

construct the corresponding 

cell tree—called star tree

 Keep a star table at the side 

for easy lookup of star 

attributes

 The star tree is a lossless 

compression of the original 

cell tree

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2
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Star-Cubing Algorithm—DFS on Lattice Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2
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Multi-Way Aggregation
ABC/ABCABD/ABACD/ABCD

ABCD



2828

Star-Cubing Algorithm—DFS on Star-Tree

ABC/ABCABD/ABACD/ABCD

ABCD
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Multi-Way Star-Tree Aggregation

 Start depth-first search at the root of the base star tree

 At each new node in the DFS, create corresponding star tree that are descendants of 

the current tree according to the integrated traversal ordering 

 E.g., in the base tree, when DFS reaches a1, the ACD/A tree is created

 When DFS reaches b*, the ABD/AD tree is created

 The counts in the base tree are carried over to the new trees

 When DFS reaches a leaf node (e.g., d*), start backtracking

 On every backtracking branch, the count in the corresponding trees are output, the 

tree is destroyed, and the node in the base tree is destroyed

 Example

 When traversing from d* back to c*, the a1b*c*/a1b*c* tree is output and 

destroyed

 When traversing from c* back to b*, the a1b*D/a1b* tree is output and 

destroyed

 When at b*, jump to b1 and repeat similar process

ABC/ABCABD/ABACD/ABCD

ABCD
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Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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The Curse of Dimensionality

 None of the previous cubing method can handle high 
dimensionality!

 A database of 600k tuples.  Each dimension has 
cardinality of 100 and zipf of 2.
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Motivation of High-D OLAP

 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: 
A Minimal Cubing Approach, VLDB'04

 Challenge to current cubing methods:

 The “curse of dimensionality’’ problem

 Iceberg cube and compressed cubes: only delay the 
inevitable explosion

 Full materialization: still significant overhead in 
accessing results on disk

 High-D OLAP is needed in applications

 Science and engineering analysis

 Bio-data analysis: thousands of genes

 Statistical surveys: hundreds of variables
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Fast High-D OLAP with Minimal Cubing

 Observation: OLAP occurs only on a small subset of 

dimensions at a time

 Semi-Online Computational Model

1. Partition the set of dimensions into shell fragments

2. Compute data cubes for each shell fragment while 

retaining inverted indices or value-list indices

3. Given the pre-computed fragment cubes, 

dynamically compute cube cells of the high-

dimensional data cube online
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Properties of Proposed Method

 Partitions the data vertically

 Reduces high-dimensional cube into a set of lower 

dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction

 Offers tradeoffs between the amount of pre-processing 

and the speed of online computation
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Example Computation

 Let the cube aggregation function be count

 Divide the 5 dimensions into 2 shell fragments: 

 (A, B, C) and (D, E)

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3
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1-D Inverted Indices

 Build traditional invert index or RID list

Attribute Value TID List List Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1
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Shell Fragment Cubes: Ideas

 Generalize the 1-D inverted indices to multi-dimensional 

ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while 

retaining the inverted indices

 For example, shell 

fragment cube ABC 

contains 7 cuboids:

 A, B, C

 AB, AC, BC

 ABC

 This completes the offline 

computation stage

111 2 3    1 4 5a1 b1

04 5    2 3a2 b2

24 54 5    1 4 5a2 b1

22 31 2 3    2 3a1 b2

List SizeTID ListIntersectionCell
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Shell Fragment Cubes: Size and Design

 Given a database of T tuples, D dimensions, and F shell 

fragment size, the fragment cubes’ space requirement is:

 For F < 5, the growth is sub-linear

 Shell fragments do not have to be disjoint

 Fragment groupings can be arbitrary to allow for 

maximum online performance

 Known common combinations (e.g.,<city, state>) 

should be grouped together.

 Shell fragment sizes can be adjusted for optimal balance 

between offline and online computation



O T
D

F







(2F 1)
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ID_Measure Table

 If measures other than count are present, store in 

ID_measure table separate from the shell fragments

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30
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The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k fragments 

(P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists in bottom-

up fashion.
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Frag-Shells (2)

A B C D E F …

ABC
Cube

DEF
Cube

D Cuboid

EF Cuboid

DE Cuboid

Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions
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Online Query Computation: Query

 A query has the general form

 Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

 For example,                                returns a 2-D 

data cube.



a1,a2, ,an :M



3 ? ? * 1: count
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Online Query Computation: Method

 Given the fragment cubes, process a query as 

follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each 

fragment from the fragment cube

3. Intersect the TID lists from each fragment to 

construct instantiated base table

4. Compute the data cube using the base table with 

any cubing algorithm
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Online Query Computation: Sketch

A B C D E F G H I J K L M N …

Online

Cube

Instantiated 

Base Table
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Experiment: Size vs. Dimensionality (50 
and 100 cardinality)

 (50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.

 (100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.
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Experiments on Real World Data

 UCI Forest CoverType data set

 54 dimensions, 581K tuples

 Shell fragments of size 2 took 33 seconds and 325MB 

to compute

 3-D subquery with 1 instantiate D: 85ms~1.4 sec.

 Longitudinal Study of Vocational Rehab. Data

 24 dimensions, 8818 tuples

 Shell fragments of size 3 took 0.9 seconds and 60MB 

to compute

 5-D query with 0 instantiated D: 227ms~2.6 sec.
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Processing Advanced Queries by 
Exploring Data Cube Technology

 Sampling Cube

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling 

Cube: A Framework for Statistical OLAP over 

Sampling Data”, SIGMOD’08

 Ranking Cube

 D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k 

queries with multi-dimensional selections: The 

ranking cube approach. VLDB’06

 Other advanced cubes for processing data and queries

 Stream cube, spatial cube, multimedia cube, text 

cube, RFID cube, etc. — to be studied in volume 2
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Statistical Surveys and OLAP

 Statistical survey: A popular tool to collect information 
about a population based on a sample

 Ex.: TV ratings, US Census, election polls

 A common tool in politics, health, market research, 
science, and many more

 An efficient way of collecting information (Data collection 
is expensive)

 Many statistical tools available, to determine validity

 Confidence intervals

 Hypothesis tests

 OLAP (multidimensional analysis) on survey data

 highly desirable but can it be done well?
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Surveys: Sample vs. Whole Population 

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population
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Problems for Drilling in Multidim. Space

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population but samples could be small 

when drilling to certain multidimensional space



5252

OLAP on Survey (i.e., Sampling) Data

Age/Education High-school College Graduate

18

19

20

…

 Semantics of query is unchanged

 Input data has changed
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Challenges for OLAP on Sampling Data

 Computing confidence intervals in OLAP context

 No data?

 Not exactly.  No data in subspaces in cube

 Sparse data

 Causes include sampling bias and query 
selection bias 

 Curse of dimensionality

 Survey data can be high dimensional

 Over 600 dimensions in real world example

 Impossible to fully materialize
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Example 1: Confidence Interval

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old high-school students?

Return not only query result but also confidence interval
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Confidence Interval

 Confidence interval at    : 

 x is a sample of data set;     is the mean of sample

 tc is the critical t-value, calculated by a look-up

 is the estimated standard error of the mean

 Example: $50,000 ± $3,000 with 95% confidence

 Treat points in cube cell as samples

 Compute confidence interval as traditional sample set

 Return answer in the form of confidence interval

 Indicates quality of query answer

 User selects desired confidence interval
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Efficient Computing Confidence Interval Measures

 Efficient computation in all cells in data cube

 Both mean and confidence interval are algebraic

 Why confidence interval measure is algebraic?

is algebraic

where both s and l (count) are algebraic

 Thus one can calculate cells efficiently at more general 

cuboids without having to start at the base cuboid each 

time



5757

Example 2: Query Expansion

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old college students?
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Boosting Confidence by Query Expansion

 From the example: The queried cell “19-year-old college 
students” contains only 2 samples

 Confidence interval is large  (i.e., low confidence). why?

 Small sample size 

 High standard deviation with samples 

 Small sample sizes can occur at relatively low dimensional 
selections

 Collect more data?― expensive!

 Use data in other cells?  Maybe, but have to be careful
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Intra-Cuboid Expansion: Choice 1

Age/Education High-school College Graduate

18

19

20

…

Expand query to include 18 and 20 year olds?
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Intra-Cuboid Expansion: Choice 2

Age/Education High-school College Graduate

18

19

20

…

Expand query to include high-school and graduate students?
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Query Expansion
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Intra-Cuboid Expansion

 Combine other cells’ data into own to “boost” 
confidence

 If share semantic and cube similarity

 Use only if necessary

 Bigger sample size will decrease confidence interval

 Cell segment similarity

 Some dimensions are clear: Age

 Some are fuzzy: Occupation

 May need domain knowledge

 Cell value similarity

 How to determine if two cells’ samples come from 
the same population?

 Two-sample t-test (confidence-based)
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Inter-Cuboid Expansion

 If a query dimension is 

 Not correlated with cube value

 But is causing small sample size by drilling down too 

much

 Remove dimension (i.e., generalize to *) and move to a 

more general cuboid

 Can use two-sample t-test to determine similarity 

between two cells across cuboids

 Can also use a different method to be shown later
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Query Expansion Experiments

 Real world sample data: 600 dimensions and 
750,000 tuples

 0.05% to simulate “sample” (allows error checking)
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Ranking Cubes – Efficient Computation of 
Ranking queries

 Data cube helps not only OLAP but also ranked search

 (top-k) ranking query: only returns the best k results 

according to a user-specified preference, consisting of (1) 

a selection condition and (2) a ranking function

 Ex.: Search for apartments with expected price 1000 and 
expected square feet 800

 Select top 1 from Apartment

 where City = “LA” and Num_Bedroom = 2

 order by [price – 1000]^2 + [sq feet - 800]^2 asc

 Efficiency question: Can we only search what we need?

 Build a ranking cube on both selection dimensions and 
ranking dimensions
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Sliced Partition 

for city=“LA”

Sliced Partition 

for BR=2

Ranking Cube: Partition Data on Both 
Selection and Ranking Dimensions

One single data 

partition as the template

Slice the data partition 

by selection conditions

Partition for

all data
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Materialize Ranking-Cube

tid City BR Price Sq feet Block ID

t1 SEA 1 500 600 5

t2 CLE 2 700 800 5

t3 SEA 1 800 900 2

t4 CLE 3 1000 1000 6

t5 LA 1 1100 200 15

t6 LA 2 1200 500 11

t7 LA 2 1200 560 11

t8 CLE 3 1350 1120 4

Step 1: Partition Data on 

Ranking Dimensions

Step 2: Group data by

Selection Dimensions

City

BR

City & BR

3 421

CLE

LA

SEA

Step 3: Compute Measures for each group

For the cell (LA)

1            2             3        4

5            6             7        8

9            10        11        12

13         14              15   16

Block-level: {11, 15}

Data-level: {11: t6, t7; 15: t5}
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Search with Ranking-Cube: 
Simultaneously Push Selection and Ranking

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

Without ranking-cube: start 

search from here
With ranking-cube: 

start search from here

Measure for LA: 

{11, 15}

{11: t6,t7; 15:t5}

11

15

Given the bin boundaries, 

locate the block with top score

Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]
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Processing Ranking Query: Execution Trace

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

With ranking-

cube: start search 

from here

Measure for LA: 

{11, 15}

{11: t6,t7; 15:t5}

11

15

f=[price-1000]^2 + [sq feet – 800]^2
Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]

Execution Trace:

1. Retrieve High-level measure for LA {11, 15}

2. Estimate lower bound score for block 11, 15

f(block 11) = 40,000, f(block 15) = 160,000

3. Retrieve block 11

4. Retrieve low-level measure for block 11

5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!
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Ranking Cube: Methodology and Extension

 Ranking cube methodology

 Push selection and ranking simultaneously

 It works for many sophisticated ranking functions

 How to support high-dimensional data?

 Materialize only those atomic cuboids that contain 

single selection dimensions

 Uses the idea similar to high-dimensional OLAP

 Achieves low space overhead and high 

performance in answering ranking queries with a 

high number of selection dimensions
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Multidimensional Data Analysis in 
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at 

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes
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Data Mining in Cube Space

 Data cube greatly increases the analysis bandwidth 

 Four ways to interact OLAP-styled analysis and data mining

 Using cube space to define data space for mining 

 Using OLAP queries to generate features and targets for 
mining, e.g., multi-feature cube

 Using data-mining models as building blocks in a multi-
step mining process, e.g., prediction cube

 Using data-cube computation techniques to speed up 
repeated model construction

 Cube-space data mining may require building a 
model for each candidate data space

 Sharing computation across model-construction for 
different candidates may lead to efficient mining
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Prediction Cubes

 Prediction cube: A cube structure that stores prediction 
models in multidimensional data space and supports 
prediction in OLAP manner

 Prediction models are used as building blocks to define 
the interestingness of subsets of data, i.e., to answer 
which subsets of data indicate better prediction
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How to Determine the Prediction Power 
of an Attribute?

 Ex. A customer table D:

 Two dimensions Z: Time (Month, Year ) and Location 
(State, Country)

 Two features X: Gender and Salary

 One class-label attribute Y: Valued Customer

 Q: “Are there times and locations in which the value of a 
customer depended greatly on the customers gender 
(i.e., Gender: predictiveness attribute V)?”

 Idea:

 Compute the difference between the model built on 
that using X to predict Y and that built on using X – V
to predict Y

 If the difference is large, V must play an important role 
at predicting Y
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Efficient Computation of Prediction Cubes

 Naïve method: Fully materialize the prediction 
cube, i.e., exhaustively build models and evaluate 
them for each cell and for each granularity

 Better approach: Explore score function 
decomposition that reduces prediction cube 
computation to data cube computation
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Multidimensional Data Analysis in 
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at 

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes
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Complex Aggregation at Multiple 
Granularities: Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries 
involving multiple dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the 
maximum price in 2010 for each group, and the total sales among 
all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

 Continuing the last example, among the max price tuples, find the  
min and max shelf live, and find the fraction of the total sales due 
to tuple that have min shelf life within the set of all max price 
tuples
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Multidimensional Data Analysis in 
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at 

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes
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Discovery-Driven Exploration of Data Cubes

 Hypothesis-driven

 exploration by user, huge search space

 Discovery-driven (Sarawagi, et al.’98)

 Effective navigation of large OLAP data cubes

 pre-compute measures indicating exceptions, guide 

user in the data analysis, at all levels of aggregation

 Exception: significantly different from the value 

anticipated, based on a statistical model

 Visual cues such as background color are used to 

reflect the degree of exception of each cell
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Kinds of Exceptions and their Computation

 Parameters 

 SelfExp: surprise of cell relative to other cells at same 

level of aggregation

 InExp: surprise beneath the cell

 PathExp: surprise beneath cell for each drill-down 

path

 Computation of exception indicator (modeling fitting and 

computing SelfExp, InExp, and PathExp values) can be 

overlapped with cube construction

 Exception themselves can be stored, indexed and 

retrieved like precomputed aggregates
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Examples: Discovery-Driven Data Cubes
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data 

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary
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Data Cube Technology: Summary

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP with Shell-Fragments

 Processing Advanced Queries by Exploring Data Cube Technology

 Sampling Cubes 

 Ranking Cubes 

 Multidimensional Data Analysis in Cube Space

 Discovery-Driven Exploration of Data Cubes 

 Multi-feature Cubes 

 Prediction Cubes
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H-Cubing: Using H-Tree Structure

 Bottom-up computation

 Exploring an H-tree 

structure

 If the current 

computation of an H-tree 

cannot pass min_sup, do 

not proceed further 

(pruning)

 No simultaneous 

aggregation

 all

 A  B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB
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H-tree: A Prefix Hyper-tree

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hhd TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …

… …

Header

table
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root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …
… …

Attr. Val. Q.I. Side-link
Edu …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)

Computing Cells Involving “City”
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Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link

Edu. Sum:2285 …

Hhd. …

Bus. …

… …

Jan. …

Feb. …

Mar. …

… …

Tor. …

Van. …

Mont. …

… …

1. Roll up quant-info
2. Compute cells involving 

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes 
top-k avg threshold, so does its parents. 
No binning is needed!
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Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
Mar …
… …
Tor …
Van …
Mon …
… …

Check header table directly

Q.I.


