# **Data Mining:**

# **Concepts and Techniques**

(3<sup>rd</sup> ed.)

#### - Chapter 6 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2011 Han, Kamber & Pei. All rights reserved.

1

# Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods



- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

**Evaluation Methods** 



# What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
  - What products were often purchased together?— Beer and diapers?!
  - What are the subsequent purchases after buying a PC?
  - What kinds of DNA are sensitive to this new drug?
  - Can we automatically classify web documents?
- Applications
  - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

# Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Sequential, structural (e.g., sub-graph) patterns
  - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
  - Classification: discriminative, frequent pattern analysis
  - Cluster analysis: frequent pattern-based clustering
  - Data warehousing: iceberg cube and cube-gradient
  - Semantic data compression: fascicles
  - Broad applications

# **Basic Concepts: Frequent Patterns**

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



itemset: A set of one or more items

k-itemset 
$$X = \{x_1, ..., x_k\}$$

- *(absolute) support*, or, *support count* of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

# **Basic Concepts: Association Rules**

| Tid | Items bought                     |
|-----|----------------------------------|
| 10  | Beer, Nuts, Diaper               |
| 20  | Beer, Coffee, Diaper             |
| 30  | Beer, Diaper, Eggs               |
| 40  | Nuts, Eggs, Milk                 |
| 50  | Nuts, Coffee, Diaper, Eggs, Milk |



- Find all the rules  $X \rightarrow Y$  with minimum support and confidence
  - support, *s*, probability that a transaction contains X ∪ Y
  - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

- *Freq. Pat.:* Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3
  - Association rules: (many more!)
    - *Beer* → *Diaper* (60%, 100%)
    - Diaper  $\rightarrow$  Beer (60%, 75%)

# **Closed Patterns and Max-Patterns**

- A long pattern contains a combinatorial number of subpatterns, e.g.,  $\{a_1, ..., a_{100}\}$  contains  $({}_{100}{}^1) + ({}_{100}{}^2) + ... + ({}_{1}{}_{0}{}^0{}_{0}{}^0) = 2^{100} - 1 = 1.27*10^{30}$  sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is *frequent* and there exists *no* super-pattern Y o X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
  - Reducing the # of patterns and rules

# **Closed Patterns and Max-Patterns**

- Exercise.  $DB = \{ \langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle \}$ 
  - Min\_sup = 1.
- What is the set of closed itemset?

What is the set of max-pattern?

What is the set of all patterns?

• !!

## Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
  - The number of frequent itemsets to be generated is sensitive to the minsup threshold
  - When minsup is low, there exist potentially an exponential number of frequent itemsets
  - The worst case: M<sup>N</sup> where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
  - Ex. Suppose Walmart has 10<sup>4</sup> kinds of products
    - The chance to pick up one product 10<sup>-4</sup>
    - The chance to pick up a particular set of 10 products:  $\sim 10^{-40}$
    - What is the chance this particular set of 10 products to be frequent 10<sup>3</sup> times in 10<sup>9</sup> transactions?

# Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

#### Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

**Evaluation Methods** 



# **Scalable Frequent Itemset Mining Methods**

Apriori: A Candidate Generation-and-Test



Approach

- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical

Data Format

# The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
  - Any subset of a frequent itemset must be frequent
  - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
  - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
  - Apriori (Agrawal & Srikant@VLDB'94)
  - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
  - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

# **Apriori: A Candidate Generation & Test Approach**

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
  - Initially, scan DB once to get frequent 1-itemset
  - Generate length (k+1) candidate itemsets from length k frequent itemsets
  - Test the candidates against DB
  - Terminate when no frequent or candidate set can be generated

### The Apriori Algorithm—An Example



# The Apriori Algorithm (Pseudo-Code)

 $C_k$ : Candidate itemset of size k  $L_k$ : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{ki}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \text{ that} \\ \text{are contained in } t \\ L_{k} = \text{candidates in } C_{k} \text{ with min support}$ 

 $L_{k+1}$  = candidates in  $C_{k+1}$  with min\_support end

**return**  $\cup_k L_k$ ;

# **Implementation of Apriori**

- How to generate candidates?
  - Step 1: self-joining L<sub>k</sub>
  - Step 2: pruning
- Example of Candidate-generation
  - L<sub>3</sub>={abc, abd, acd, ace, bcd}
  - Self-joining: L<sub>3</sub>\*L<sub>3</sub>
    - *abcd* from *abc* and *abd*
    - acde from acd and ace
  - Pruning:
    - acde is removed because ade is not in L<sub>3</sub>
  - *C*<sub>4</sub> = {*abcd*}

# How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
  - The total number of candidates can be very huge
  - One transaction may contain many candidates
- Method:
  - Candidate itemsets are stored in a *hash-tree*
  - Leaf node of hash-tree contains a list of itemsets and counts
  - Interior node contains a hash table
  - Subset function: finds all the candidates contained in a transaction

#### **Counting Supports of Candidates Using Hash Tree**



#### **Candidate Generation: An SQL Implementation**

- SQL Implementation of candidate generation
  - Suppose the items in L<sub>k-1</sub> are listed in an order
  - Step 1: self-joining *L*<sub>*k*-1</sub>
    - insert into  $C_k$
    - select *p.item*<sub>1</sub>, *p.item*<sub>2</sub>, ..., *p.item*<sub>k-1</sub>, *q.item*<sub>k-1</sub>
    - from *L<sub>k-1</sub> p, L<sub>k-1</sub> q*

where  $p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$ 

Step 2: pruning

forall *itemsets c in C<sub>k</sub>* do

forall *(k-1)-subsets s of c* do

if (s is not in  $L_{k-1}$ ) then delete c from  $C_k$ 

 Use object-relational extensions like UDFs, BLOBs, and Table functions for efficient implementation [See: S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98]

# **Scalable Frequent Itemset Mining Methods**

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori



- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

# **Further Improvement of the Apriori Method**

- Major computational challenges
  - Multiple scans of transaction database
  - Huge number of candidates
  - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
  - Reduce passes of transaction database scans
  - Shrink number of candidates
  - Facilitate support counting of candidates

# **Partition: Scan Database Only Twice**

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
  - Scan 1: partition database and find local frequent patterns
  - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe, VLDB'95



# **DHP: Reduce the Number of Candidates**

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
  - Candidates: a, b, c, d, e
  - Hash entries
    - {ab, ad, ae}
    - {bd, be, de}
    - **...**
  - Frequent 1-itemset: a, b, d, e
  - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. *SIGMOD'95*

| count | itemsets     |
|-------|--------------|
| 35    | {ab, ad, ae} |
| 88    | {bd, be, de} |
| •     |              |
|       |              |
| •     |              |
|       |              |
| 102   | {yz, qs, wt} |
|       |              |

Hash Table

# **Sampling for Frequent Patterns**

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only *borders* of closure of frequent patterns are checked
  - Example: check *abcd* instead of *ab, ac, ..., etc.*
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

# **DIC: Reduce Number of Scans**

DIC



S. Brin R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. *SIGMOD'97* 

- Once both A and D are determined frequent, the counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins



# **Scalable Frequent Itemset Mining Methods**

- Apriori: A Candidate Generation-and-Test Approach

- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

# Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
  - Breadth-first (i.e., level-wise) search
  - Candidate generation and test
    - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
  - Depth-first search
  - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
  - "abc" is a frequent pattern
  - Get all transactions having "abc", i.e., project DB on abc: DB|abc
  - "d" is a local frequent item in DB|abc  $\rightarrow$  abcd is a frequent pattern

#### **Construct FP-tree from a Transaction Database**

| TID        | Items bought (o              | rdered) frequent item      | <u>S</u>                                  |
|------------|------------------------------|----------------------------|-------------------------------------------|
| 100        | $\{f, a, c, d, g, i, m, p\}$ | $\{f, c, a, m, p\}$        |                                           |
| 200        | $\{a, b, c, f, l, m, o\}$    | $\{f, c, a, b, m\}$        | •                                         |
| 300        | $\{b, f, h, j, o, w\}$       | $\{f, b\}$                 | min_support = 3                           |
| <b>400</b> | $\{b, c, k, s, p\}$          | $\{c, b, p\}$              |                                           |
| 500        | $\{a, f, c, e, l, p, m, n\}$ | $\{f, c, a, m, p\}$        | {}                                        |
|            |                              | Header Table               |                                           |
| Scan DE    | B once, find                 |                            |                                           |
| frequent   | t 1-itemset (single          | Item frequency he          | <u>ad</u> f:4 c:1                         |
| item pat   | ttern)                       | $\int f = 4$               |                                           |
|            |                              | c 4                        | $ \rightarrow c:3/ b:1 \rightarrow b:1 $  |
| Sort free  | quent items in               | a 3                        |                                           |
| frequen    | cy descending                | b 3                        |                                           |
| order, f-  | list                         | m 3                        |                                           |
|            | · · · ·                      | <i>p</i> 3                 | $m \cdot 2$ $b \cdot 1$                   |
| Scan DE    | again, construct             |                            |                                           |
| FP-tree    | - I:                         |                            |                                           |
|            | 111                          | st = t - c - a - b - m - p | $\rightarrow p:2 \parallel m:1 \parallel$ |

1.

2.

3.

# **Partition Patterns and Databases**

- Frequent patterns can be partitioned into subsets according to f-list
  - F-list = f-c-a-b-m-p
  - Patterns containing p
  - Patterns having m but no p
  - ...
  - Patterns having c but no a nor b, m, p
  - Pattern f
- Completeness and non-redundency

#### Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of *transformed prefix paths* of item *p* to form *p*'s conditional pattern base



| Conditional pattern bases |                    |  |  |  |  |  |  |
|---------------------------|--------------------|--|--|--|--|--|--|
| item                      | cond. pattern base |  |  |  |  |  |  |
| С                         | <i>f:3</i>         |  |  |  |  |  |  |
| a                         | fc:3               |  |  |  |  |  |  |
| b                         | fca:1, f:1, c:1    |  |  |  |  |  |  |
| т                         | fca:2, fcab:1      |  |  |  |  |  |  |
| p                         | fcam:2, cb:1       |  |  |  |  |  |  |

#### **From Conditional Pattern-bases to Conditional FP-trees**

- For each pattern-base
  - Accumulate the count for each item in the base
  - Construct the FP-tree for the frequent items of the pattern base



#### **Recursion: Mining Each Conditional FP-tree**

*cm-conditional* **FP-tree** 

Cond. pattern base of "cam": (f:3) f:3

cam-conditional FP-tree

 $\left\{ \right\}$ 

#### A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts

 $\left\{ \right\}$ 

- Reduction of the single prefix path into one node
- $a_1:n_1$  Concatenation of the mining results of the two  $a_2:n_2$  parts



# **Benefits of the FP-tree Structure**

#### Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction
- Compactness
  - Reduce irrelevant info—infrequent items are gone
  - Items in frequency descending order: the more frequently occurring, the more likely to be shared
  - Never be larger than the original database (not count node-links and the *count* field)

# **The Frequent Pattern Growth Mining Method**

- Idea: Frequent pattern growth
  - Recursively grow frequent patterns by pattern and database partition
- Method
  - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
  - Repeat the process on each newly created conditional FP-tree
  - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

# Scaling FP-growth by Database Projection

- What about if FP-tree cannot fit in memory?
  - DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques
  - Parallel projection
    - Project the DB in parallel for each frequent item
    - Parallel projection is space costly
    - All the partitions can be processed in parallel
  - Partition projection
    - Partition the DB based on the ordered frequent items
    - Passing the unprocessed parts to the subsequent partitions

#### **Partition-Based Projection**



# **Performance of FPGrowth in Large Datasets**



FP-Growth vs. Apriori

FP-Growth vs. Tree-Projection

# **Advantages of the Pattern Growth Approach**

- Divide-and-conquer:
  - Decompose both the mining task and DB according to the frequent patterns obtained so far
  - Lead to focused search of smaller databases
- Other factors
  - No candidate generation, no candidate test
  - Compressed database: FP-tree structure
  - No repeated scan of entire database
  - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
  - FPGrowth+ (Grahne and J. Zhu, FIMI'03)

# **Further Improvements of Mining Methods**

- AFOPT (Liu, et al. @ KDD'03)
  - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
  - Mine data sets with small rows but numerous columns
  - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI'03)
  - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM'06)

#### **Extension of Pattern Growth Mining Methodology**

- Mining closed frequent itemsets and max-patterns
  - CLOSET (DMKD'00), FPclose, and FPMax (Grahne & Zhu, Fimi'03)
- Mining sequential patterns
  - PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
  - gSpan (ICDM'02), CloseGraph (KDD'03)
- Constraint-based mining of frequent patterns
  - Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
  - H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
  - MaPle (Pei, et al., ICDM'03)
- Pattern-Growth-Based Classification
  - Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

# **Scalable Frequent Itemset Mining Methods**

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
  - $\bigwedge$
- Mining Close Frequent Patterns and Maxpatterns

### ECLAT: Mining by Exploring Vertical Data Format

- Vertical format:  $t(AB) = \{T_{11}, T_{25}, ...\}$ 
  - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
  - t(X) = t(Y): X and Y always happen together
  - $t(X) \subset t(Y)$ : transaction having X always has Y
- Using diffset to accelerate mining
  - Only keep track of differences of tids
  - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
  - Diffset (XY, X) = {T<sub>2</sub>}
- Eclat (Zaki et al. @KDD'97)
- Mining Closed patterns using vertical format: CHARM (Zaki & Hsiao@SDM'02)

# **Scalable Frequent Itemset Mining Methods**

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns



#### Mining Frequent Closed Patterns: CLOSET

- Flist: list of all frequent items in support ascending order
  - Flist: d-a-f-e-c
- Divide search space
  - Patterns having d
  - Patterns having d but no a, etc.
- Find frequent closed pattern recursively
  - Every transaction having d also has cfa → cfad is a frequent closed pattern
- J. Pei, J. Han & R. Mao. "CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00.

| Min_sup=2 |               |  |  |  |  |  |  |  |  |
|-----------|---------------|--|--|--|--|--|--|--|--|
| TID       | Items         |  |  |  |  |  |  |  |  |
| 10        | a, c, d, e, f |  |  |  |  |  |  |  |  |
| 20        | a, b, e       |  |  |  |  |  |  |  |  |
| 30        | c, e, f       |  |  |  |  |  |  |  |  |
| 40        | a, c, d, f    |  |  |  |  |  |  |  |  |
| 50        | c, e, f       |  |  |  |  |  |  |  |  |

#### **CLOSET+: Mining Closed Itemsets by Pattern-Growth**

- Itemset merging: if Y appears in every occurrence of X, then Y is merged with X
- Sub-itemset pruning: if Y > X, and sup(X) = sup(Y), X and all of X's descendants in the set enumeration tree can be pruned
- Hybrid tree projection
  - Bottom-up physical tree-projection
  - Top-down pseudo tree-projection
- Item skipping: if a local frequent item has the same support in several header tables at different levels, one can prune it from the header table at higher levels
- Efficient subset checking

# **MaxMiner: Mining Max-Patterns**



 R. Bayardo. Efficiently mining long patterns from databases. *SIGMOD'98*

### CHARM: Mining by Exploring Vertical Data Format

- Vertical format:  $t(AB) = \{T_{11}, T_{25}, ...\}$ 
  - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
  - t(X) = t(Y): X and Y always happen together
  - t(X) ⊂ t(Y): transaction having X always has Y
- Using diffset to accelerate mining
  - Only keep track of differences of tids
  - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
  - Diffset (XY, X) = {T<sub>2</sub>}
- Eclat/MaxEclat (Zaki et al. @KDD'97), VIPER(P. Shenoy et al.@SIGMOD'00), CHARM (Zaki & Hsiao@SDM'02)

# Visualization of Association Rules: Plane Graph



# Visualization of Association Rules: Rule Graph



# Visualization of Association Rules (SGI/MineSet 3.0)



# Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

#### Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

**Evaluation Methods** 



### **Interestingness Measure: Correlations (Lift)**

- *play basketball*  $\Rightarrow$  *eat cereal* [40%, 66.7%] is misleading
  - The overall % of students eating cereal is 75% > 66.7%.
- *play basketball* ⇒ *not eat cereal* [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

$$lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$
Basketball Not basketball Sum (row)
Cereal 2000 1750 3750
Not cereal 1000 250 1250
Sum(col.) 3000 2000 5000
Integration of the second seco

# Are *lift* and $\chi^2$ Good Measures of Correlation?

- "Buy walnuts ⇒ buy milk [1%, 80%]" is misleading if 85% of customers buy milk
- Support and confidence are not good to indicate correlations
- Over 20 interestingness measures have been proposed (see Tan, Kumar, Sritastava @KDD'02)
- Which are good ones?

| symbol    | measure             | range              | formula                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|---------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\phi$    | $\phi$ -coefficient | -11                | $\frac{P(A,B) - P(A)P(B)}{P(A,B) - P(A)P(B)}$                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q         | Yule's Q            | -1 1               | $\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\frac{P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B}) + P(A,\overline{B})P(\overline{A},B)}}$                                                                                                                                                                                                                                                 |
| Y         | Yule's Y            | -1 1               | $\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},\overline{B})}}$                                                                                                                                                                                                                                                  |
| $_{k}$    | Cohen's             | -1 1               | $\frac{P(A,B)+P(A,B)-P(A)P(B)-P(A)P(B)}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$                                                                                                                                                                                                                                                                                                                                                               |
| PS        | Piatetsky-Shapiro's | -0.25 0.25         | P(A,B) - P(A)P(B)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F         | Certainty factor    | -1 1               | $\max(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)})$                                                                                                                                                                                                                                                                                                                                                                                    |
| AV        | added value         | -0.5 1             | $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                                                                                                                                                                                                                                                                              |
| K         | Klosgen's Q         | -0.330.38          | $\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                                                                                                                                                                                                                                                                 |
| g         | Goodman-kruskal's   | $0 \dots 1$        | $\frac{\hat{\Sigma}_j \max_k P(A_j, B_k) + \hat{\Sigma}_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)}{2 - \max_j P(A_j) - \max_k P(B_k)}$                                                                                                                                                                                                                                                                                                 |
| M         | Mutual Information  | 01                 | $\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i)P(B_J)}{P(A_i)P(B_J)}$                                                                                                                                                                                                                                                                                                                                                                            |
| J         | J-Measure           | 01                 | $ \max(P(A, B) \log(\frac{P(B_i)}{P(B)}) + P(A\overline{B}) \log(\frac{P(B_i)}{P(B)})) $                                                                                                                                                                                                                                                                                                                                                          |
| G         | Gini index          | 01                 | $P(A, B) \log(\frac{P(\overline{A} B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$<br>$\max(P(A) P(B A)^{2} + P(\overline{B} A)^{2}  + P(\overline{A} P(B \overline{A})^{2} + P(\overline{B} \overline{A})^{2}  - P(B)^{2} - P(\overline{B})^{2},$<br>$\max(P(A) P(B A)^{2} + P(\overline{B} A)^{2}  + P(\overline{A} P(B \overline{A})^{2} + P(\overline{B} \overline{A})^{2}) - P(B)^{2} - P(\overline{B})^{2},$ |
| 8         | support             | 01                 | P(A,B) = P(A B) + P(A B) = P(A) + P(A B)                                                                                                                                                                                                                                                                                                                                                                      |
| c         | confidence          | $0 \dots 1$        | max(P(B A), P(A B))                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L         | Laplace             | $0 \dots 1$        | $\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$                                                                                                                                                                                                                                                                                                                                                                            |
| IS        | Cosine              | 01                 | $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\gamma$  | coherence(Jaccard)  | $0 \dots 1$        | $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\alpha$  | all_confidence      | 0 1                | $\frac{P(A,B)}{\max(P(A),P(B))}$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0         | odds ratio          | $0 \dots \infty$   | $\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$                                                                                                                                                                                                                                                                                                                                                                   |
| $V_{-}$   | Conviction          | $0.5 \dots \infty$ | $\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$                                                                                                                                                                                                                                                                                                                                     |
| $\lambda$ | lift                | $0\ldots\infty$    | $\frac{P(A,B)}{P(A)P(B)}$                                                                                                                                                                                                                                                                                                                                                                                                                         |
| S         | Collective strength | $0 \dots \infty$   | $\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$                                                                                                                                                                                                                                                                          |
| $\chi^2$  | $\chi^2$            | $0 \dots \infty$   | $\sum_{i} \frac{(P(A_i) - E_i)^2}{E_i}$                                                                                                                                                                                                                                                                                                                                                                                                           |

# **Null-Invariant Measures**

| $\mathbf{x}$ | Table 6: | Properties | of interestingness | measures. I | Note that | none of the | measures satisfies | all the pro | perties. |
|--------------|----------|------------|--------------------|-------------|-----------|-------------|--------------------|-------------|----------|
|--------------|----------|------------|--------------------|-------------|-----------|-------------|--------------------|-------------|----------|

| Symbol    | Measure             | Range                                                                                                                 | P1          | P2       | P3       | 01               | 02     | O3      | O3' | O4  |               |
|-----------|---------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|------------------|--------|---------|-----|-----|---------------|
| $\phi$    | $\phi$ -coefficient | $-1 \cdots 0 \cdots 1$                                                                                                | Yes         | Yes      | Yes      | Yes              | No     | Yes     | Yes | No  | 1             |
| $\lambda$ | Goodman-Kruskal's   | $0 \cdots 1$                                                                                                          | Yes         | No       | No       | Yes              | No     | No*     | Yes | No  |               |
| $\alpha$  | odds ratio          | $0 \cdots 1 \cdots \infty$                                                                                            | $Yes^*$     | Yes      | Yes      | Yes              | Yes    | $Yes^*$ | Yes | No  |               |
| Q         | Yule's $Q$          | $-1 \cdots 0 \cdots 1$                                                                                                | Yes         | Yes      | Yes      | Yes              | Yes    | Yes     | Yes | No  |               |
| Y         | Yule's $Y$          | $-1 \cdots 0 \cdots 1$                                                                                                | Yes         | Yes      | Yes      | Yes              | Yes    | Yes     | Yes | No  |               |
| $\kappa$  | Cohen's             | $-1 \cdots 0 \cdots 1$                                                                                                | Yes         | Yes      | Yes      | Yes              | No     | No      | Yes | No  |               |
| M         | Mutual Information  | $0 \cdots 1$                                                                                                          | Yes         | Yes      | Yes      | No**             | No     | No*     | Yes | No  |               |
| J         | J-Measure           | $0 \cdots 1$                                                                                                          | Yes         | No       | No       | No <sup>**</sup> | No     | No      | No  | No  |               |
| G         | Gini index          | $0 \cdots 1$                                                                                                          | Yes         | No       | No       | No <sup>**</sup> | No     | No*     | Yes | No  |               |
| s         | Support             | $0 \cdots 1$                                                                                                          | No          | Yes      | No       | Yes              | No     | No      | No  | No  |               |
| c         | Confidence          | $0 \cdots 1$                                                                                                          | No          | Yes      | No       | No**             | No     | No      | No  | Yes | $\mathcal{V}$ |
| L         | Laplace             | $0 \cdots 1$                                                                                                          | No          | Yes      | No       | No <sup>**</sup> | No     | No      | No  | No  |               |
| V         | Conviction          | $0.5 \cdots 1 \cdots \infty$                                                                                          | No          | Yes      | No       | No <sup>**</sup> | No     | No      | Yes | No  |               |
| Ι         | Interest            | $0 \cdots 1 \cdots \infty$                                                                                            | $Yes^*$     | Yes      | Yes      | Yes              | No     | No      | No  | No  |               |
| IS        | Cosine              | $0 \cdots \sqrt{P(A, B)} \cdots 1$                                                                                    | No          | Yes      | Yes      | Yes              | No     | No      | No  | Yes | D             |
| PS        | Piatetsky-Shapiro's | $-0.25 \cdots 0 \cdots 0.25$                                                                                          | Yes         | Yes      | Yes      | Yes              | No     | Yes     | Yes | No  | Ī             |
| F         | Certainty factor    | $-1 \cdots 0 \cdots 1$                                                                                                | Yes         | Yes      | Yes      | No**             | No     | No      | Yes | No  |               |
| AV        | Added value         | $-0.5 \cdots 0 \cdots 1$                                                                                              | Yes         | Yes      | Yes      | No**             | No     | No      | No  | No  |               |
| S         | Collective strength | $0 \cdots 1 \cdots \infty$                                                                                            | No          | Yes      | Yes      | Yes              | No     | $Yes^*$ | Yes | No  |               |
| ς         | Jaccard             | $0 \cdots 1$                                                                                                          | No          | Yes      | Yes      | Yes              | No     | No      | No  | Yes | D             |
| K         | Klosgen's           | $\left(\frac{2}{\sqrt{3}}-1\right)^{1/2}\left[2-\sqrt{3}-\frac{1}{\sqrt{3}}\right]\cdots 0\cdots \frac{2}{3\sqrt{3}}$ | Yes         | Yes      | Yes      | No**             | No     | No      | No  | No  | Í             |
|           | where: P1:          | $O(\mathbf{M}) = 0$ if $det(\mathbf{M}) = 0$ , <i>i.e.</i> , whenever A                                               | 4 and $E$   | 3 are st | tatistic | ally ind         | epende | nt.     |     |     | -             |
|           | P2:                 | $O(\mathbf{M_2}) > O(\mathbf{M_1})$ if $\mathbf{M_2} = \mathbf{M_1} + [k - k;$                                        | $-k \ k$ ]. |          |          |                  |        |         |     |     |               |
|           | P3:                 | $O(\mathbf{M_2}) < O(\mathbf{M_1})$ if $\mathbf{M_2} = \mathbf{M_1} + [0 \ k; \ 0]$                                   | – k] or     | $M_2 =$  | $M_1 +$  | $[0 \ 0; k]$     | - k].  |         |     |     |               |
|           | O1:                 | Property 1: Symmetry under variable per                                                                               | mutatio     | on.      |          | -                | -      |         |     |     |               |
|           | O2:                 | Property 2: Row and Column scaling inva                                                                               | ariance.    |          |          |                  |        |         |     |     |               |
|           | O3:                 | Property 3: Antisymmetry under row or o                                                                               | column      | permu    | tation   |                  |        |         |     |     |               |
|           | O3':                | Property 4: Inversion invariance.                                                                                     |             |          |          |                  |        |         |     |     |               |
|           | O4:                 | Property 5: Null invariance.                                                                                          |             |          |          |                  |        |         |     |     |               |
|           | $Yes^*$ :           | Yes if measure is normalized.                                                                                         |             |          |          |                  |        |         |     |     |               |
|           | No*:                | Symmetry under row or column permutat                                                                                 | tion.       |          |          |                  |        |         |     |     |               |

No<sup>\*\*</sup>: Symmetry under row or column permutation. No<sup>\*\*</sup>: No unless the measure is symmetrized by taking  $\max(M(A, B), M(B, A))$ .

# **Comparison of Interestingness Measures**

- Null-(transaction) invariance is crucial for correlation analysis
- Lift and  $\chi^2$  are
- 5 null-invariar

Data set

 $\overline{D}_1$ 

 $D_2$ 

 $D_3$ 

 $D_4$ 

 $D_5$ 

 $D_6$ 

|           | Milk  | No Milk | Sum (row) |
|-----------|-------|---------|-----------|
|           |       |         |           |
| Coffee    | m, c  | ~m, c   | С         |
| No Coffee | m, ~c | ~m, ~c  | ~C        |
| Sum(col.) | m     | ~m      | Σ         |

| .ift and $\chi^{2}$ are not null-invariant $[$ |              |                 |                 |                 |                                                                                                            | Mea                | sure                               |                        | Def                                     | initio                          | 1                        | Range        | Null-Invariar | $\mathbf{t}$ |
|------------------------------------------------|--------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|------------------------|-----------------------------------------|---------------------------------|--------------------------|--------------|---------------|--------------|
| 5 null-invariant measures                      |              |                 |                 |                 | $\chi^{2}(a,b) \qquad \sum_{i,j=0,1} \frac{(e(a_{i},b_{j})-o(a_{i},b_{j}))^{\frac{1}{2}}}{e(a_{i},b_{j})}$ |                    | $\frac{-o(a_i,b_j))^2}{(a_i,b_j)}$ | $[0,\infty]$           | No                                      |                                 |                          |              |               |              |
|                                                |              |                 |                 |                 |                                                                                                            | Lift(              | (a, b)                             |                        | $\frac{P}{P(r)}$                        | P(ab)<br>a)P(b)                 |                          | $[0,\infty]$ | No            |              |
| Milk No Milk Sum (row)                         |              |                 |                 |                 | AllCor                                                                                                     | nf(a, b)           |                                    | $\frac{su}{max\{su\}}$ | p(ab)<br>p(a), su                       | p(b)                            | [0, 1]                   | Yes          |               |              |
|                                                |              |                 | -               |                 |                                                                                                            | Coheren            | nce(a, b)                          |                        | $\frac{sup(ab)}{sup(a)+sup(b)-sup(ab)}$ |                                 |                          | [0, 1]       | Yes           |              |
| e                                              | m, c         |                 | νm, C           | C               |                                                                                                            | Cosin              | e(a, b)                            |                        |                                         | p(ab)                           |                          | [0, 1]       | Yes           |              |
| offee                                          | m, ^         | ~   ~           | ∙m, ~c          | ~C              |                                                                                                            |                    |                                    |                        | $\sqrt{sup}$                            | (a)sup<br>1                     | (b)<br>1 \               |              |               | $\neg$       |
| (col.)                                         | m            | ~               | 'n              | Σ               |                                                                                                            | Kulc               | (a,b)                              | -                      | $\frac{up(ub)}{2}(\frac{u}{su})$        | $\frac{1}{p(a)} +$              | $\frac{1}{sup(b)}$       | [0, 1]       | Yes           | $\neg$       |
| ()                                             |              |                 |                 |                 |                                                                                                            | MaxCa              | onf(a,b)                           | 1                      | $max\{\frac{sup(}{sup})$                | $\frac{(ab)}{(a)}, \frac{s}{s}$ | $\frac{up(ab)}{up(b)}$ } | [0, 1]       | Yes           |              |
| Null_                                          | trand        | actio           | nc              | Гк              | (ulczvr                                                                                                    | nski <sup>Ta</sup> | able 3.                            | . In                   | terestin                                | gnes                            | s measu                  | re defi      | nitions.      |              |
| w.r.                                           | <u>.t. m</u> | and             | c               | n               | neasu                                                                                                      | re (19             | 927)                               |                        |                                         | Γ                               | Null-ir                  | ivaria       | ant           |              |
| set                                            | mc           | $\overline{mc}$ | $\overline{ms}$ | $\overline{mc}$ | $\chi^2$                                                                                                   | Lift               | AllCo                              | nf                     | Cohere                                  | ence                            | Cesine                   | Kulc         | MaxConf       | i .          |
| 10                                             | 0,000        | 1,000           | 1,000           | 00,000          | 90557                                                                                                      | 9.26               | 0.91                               | N                      | 0.83                                    | 3                               | 0.91                     | 0.91         | 0.91          | ]            |
| 10                                             | 0,000        | 1,000           | 1,000           | 100             | 0                                                                                                          | 1                  | 0.91                               |                        | 0.83                                    | 3                               | 0.91                     | 0.91         | 0.91          |              |
| -                                              | 100          | 1,000           | 1,000           | 100,000         | 670                                                                                                        | 8.44               | 0.09                               |                        | 0.05                                    | 5                               | 0.09                     | 0.09         | 0.09          |              |
| 1                                              | ,000         | 1,000           | 1,000           | 100,000         | 24740                                                                                                      | 25.75              | 0.5                                |                        | 0.33                                    | 3                               | 0.5                      | 0.5          | 0.5           |              |
|                                                | ,000         | 100             | 10,000          | 100,000         | 8173                                                                                                       | 9(18               | 0.09                               |                        | 0.09                                    | )                               | 0.29                     | 0.5          | 0.91          |              |
|                                                | ,000         | 10              | 100,000         | 100,000         | 965                                                                                                        | 1.97               | 0.01                               |                        | 0.01                                    |                                 | 0.10                     | 0.5          | 0.99          | ┢            |
|                                                |              |                 |                 | Table           | 2. Ex                                                                                                      | ampl               | le dat                             | a.                     | sets.                                   | S                               | ibtle <sup>.</sup> T     | hev          | disagree      |              |

# **Analysis of DBLP Coauthor Relationships**

#### Recent DB conferences, removing balanced associations, low sup, etc.

| ID | Author $a$           | Author $b$           | sup(ab)  | sup(a) | sup(b) | Coherence | Cosine    | Kulc      |
|----|----------------------|----------------------|----------|--------|--------|-----------|-----------|-----------|
| 1  | Hans-Peter Kriegel   | Martin Ester         | 28       | 146    | 54     | 0.163(2)  | 0.315(7)  | 0.355(9)  |
| 2  | Michael Carey        | Miron Livny          | 26       | 104    | 58     | 0.191(1)  | 0.335(4)  | 0.349(10) |
| 3  | Hans-Peter Kriegel   | Joerg Sander         | 24       | 146    | 36     | 0.152(3)  | 0.331(5)  | 0.416(8)  |
| 4  | Christos Faloutsos   | Spiros Papadimitriou | 20       | 162    | 26     | 0.119(7)  | 0.308(10) | 0.446(7)  |
| 5  | Hans-Peter Kriegel   | Martin Pfeifle       | 18       | 146    | 18     | 0.123(6)  | 0.351(2)  | 0.562(2)  |
| 6  | Hector Garcia-Molina | Wilburt Labio        | 16       | 144    | 18     | 0.110(9)  | 0.314(8)  | 0.500(4)  |
| 7  | Divyakant Agrawal    | Wang Hsiung          | (16)     | 120    | 16     | 0.133(5)  | 0.365(1)  | 0.567(1)  |
| 8  | Elke Rundensteiner   | Murali Mani          | 16       | 104    | 20     | 0.148(4)  | 0.351(3)  | 0.477(6)  |
| 9  | Divyakant Agrawal    | Oliver Po            | 12       | 120    | 12     | 0.100(10) | 0.316(6)  | 0.550(3)  |
| 10 | Gerhard Weikum       | Martin Theobald      | 12       | 106    | 14     | 0.111(8)  | 0.312(9)  | 0485(5)   |
|    | Т                    | able 5. Experime     | ent on l | DBLP   | data   | set.      |           |           |

Advisor-advisee relation: Kulc: high, coherence: low, cosine: middle

Tianyi Wu, Yuguo Chen and Jiawei Han, "<u>Association Mining in Large Databases: A Re-Examination of Its Measures</u>", Proc. 2007 Int. Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD'07), Sept. 2007

### Which Null-Invariant Measure Is Better?

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D<sub>4</sub> through D<sub>6</sub>
  - D<sub>4</sub> is balanced & neutral
  - D<sub>5</sub> is imbalanced & neutral
  - D<sub>6</sub> is very imbalanced & neutral

| ata    | mc             | $\overline{m}c$  | $m\overline{c}$           | $\overline{mc}$      | $all\_conf.$   | $max\_conf.$   | Kulc.                                     | cosine         | $\mathbf{IR}$ |
|--------|----------------|------------------|---------------------------|----------------------|----------------|----------------|-------------------------------------------|----------------|---------------|
| 1      | 10,000         | 1,000            | 1,000                     | 100,000              | 0.91           | 0.91           | 0.91                                      | 0.91           | 0.0           |
| 2      | 10,000         | 1,000            | 1,000                     | 100                  | 0.91           | 0.91           | 0.91                                      | 0.91           | 0.0           |
| 3      | 100            | 1,000            | 1,000                     | 100,000              | 0.09           | 0.09           | 0.09                                      | 0.09           | 0.0           |
| 4      | 1,000          | 1,000            | 1,000                     | 100,000              | 0.5            | 0.5            | 0.5                                       | 0.5            | 0.0           |
| 5      | 1,000          | 100              | 10,000                    | 100,000              | 0.09           | 0.91           | 0.5                                       | 0.29           | 0.89          |
| 8      | 1,000          | 10               | 100,000                   | 100,000              | 0.01           | 0.99           | 0.5                                       | 0.10           | 0.99          |
| 5<br>8 | 1,000<br>1,000 | $\frac{100}{10}$ | $10,\!000$<br>$100,\!000$ | $100,000 \\ 100,000$ | $0.09 \\ 0.01$ | $0.91 \\ 0.99$ | $\begin{array}{c} 0.5 \\ 0.5 \end{array}$ | $0.29 \\ 0.10$ | 0<br>0        |

# Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

#### Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

**Evaluation Methods** 



# Summary

- Basic concepts: association rules, supportconfident framework, closed and max-patterns
- Scalable frequent pattern mining methods
  - Apriori (Candidate generation & test)
  - Projection-based (FPgrowth, CLOSET+, ...)
  - Vertical format approach (ECLAT, CHARM, ...)
- Which patterns are interesting?
  - Pattern evaluation methods

### **Ref: Basic Concepts of Frequent Pattern Mining**

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
   Discovering frequent closed itemsets for association rules. ICDT'99
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns.
   ICDE'95

# **Ref: Apriori and Its Improvements**

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
   VLDB'94
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95
- H. Toivonen. Sampling large databases for association rules. VLDB'96
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98

### **Ref: Depth-First, Projection-Based FP Mining**

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing, 2002.
- G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc.
   FIMI'03
- B. Goethals and M. Zaki. An introduction to workshop on frequent itemset mining implementations. *Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03),* Melbourne, FL, Nov. 2003
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
   SIGMOD' 00
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03

#### **Ref: Vertical Format and Row Enumeration Methods**

- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. DAMI:97.
- M. J. Zaki and C. J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
- C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints. KDD'02.
- F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki , CARPENTER: Finding Closed Patterns in Long Biological Datasets. KDD'03.
- H. Liu, J. Han, D. Xin, and Z. Shao, Mining Interesting Patterns from Very High Dimensional Data: A Top-Down Row Enumeration Approach, SDM'06.

#### **Ref: Mining Correlations and Interesting Rules**

- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94.
- R. J. Hilderman and H. J. Hamilton. *Knowledge Discovery and Measures of Interest*. Kluwer Academic, 2001.
- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98.
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02.
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03.
- T. Wu, Y. Chen, and J. Han, "Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework", Data Mining and Knowledge Discovery, 21(3):371-397, 2010