

Concepts and Techniques

(3rd ed.)

- Chapter 7 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2010 Han, Kamber & Pei. All rights reserved.

Chapter 7 : Advanced Frequent Pattern Mining

Pattern Mining: A Road Map

- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
 - 🔹 Pattern Mining in Multi-Level, Multi-Dimensional Space 🧡
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

Mining Multiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support
- Exploration of *shared* multi-level mining (Agrawal & Srikant@VLB'95, Han & Fu@VLDB'95)

Multi-level Association: Flexible Support and Redundancy filtering

- Flexible min-support thresholds: Some items are more valuable but less frequent
 - Use non-uniform, group-based min-support
 - E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; ...
- Redundancy Filtering: Some rules may be redundant due to "ancestor" relationships between items
 - milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]

The first rule is an ancestor of the second rule

 A rule is *redundant* if its support is close to the "expected" value, based on the rule's ancestor

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
 - 🔹 Pattern Mining in Multi-Level, Multi-Dimensional Space 🧡
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

Mining Multi-Dimensional Association

Single-dimensional rules:

buys(X, "milk") \Rightarrow buys(X, "bread")

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (*no repeated predicates*) age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X, "coke")
 - hybrid-dimension assoc. rules (*repeated predicates*) age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes: finite number of possible values, no ordering among values—data cube approach
- Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
 - 🔹 Pattern Mining in Multi-Level, Multi-Dimensional Space 🧡
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

Mining Quantitative Associations

Techniques can be categorized by how numerical attributes, such as age or salary are treated

- 1. Static discretization based on predefined concept hierarchies (data cube methods)
- Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
- 3. Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)
 - One dimensional clustering then association
- 4. Deviation: (such as Aumann and Lindell@KDD99) Sex = female => Wage: mean=\$7/hr (overall mean = \$9)

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans
- Data cube is well suited for mining
- The cells of an n-dimensional cuboid correspond to the predicate sets
- Mining from data cubes
 can be much faster

Quantitative Association Rules Based on Statistical Inference Theory [Aumann and Lindell@DMKD'03]

Finding extraordinary and therefore interesting phenomena, e.g.,

(Sex = female) => Wage: mean=\$7/hr (overall mean = \$9)

- LHS: a subset of the population
- RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: highlights the extraordinary behavior of a subset of the pop. of the super rule
 - E.g., (Sex = female) ^ (South = yes) => mean wage = \$6.3/hr
- Two forms of rules
 - Categorical => quantitative rules, or Quantitative => quantitative rules
 - E.g., Education in [14-18] (yrs) => mean wage = \$11.64/hr
- Open problem: Efficient methods for LHS containing two or more quantitative attributes

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
 - Pattern Mining in Multi-Level, Multi-Dimensional Space
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

Negative and Rare Patterns

- Rare patterns: Very low support but interesting
 - E.g., buying Rolex watches
 - Mining: Setting individual-based or special group-based support threshold for valuable items
- Negative patterns
 - Since it is unlikely that one buys Ford Expedition (an SUV car) and Toyota Prius (a hybrid car) together, Ford Expedition and Toyota Prius are likely negatively correlated patterns
- Negatively correlated patterns that are infrequent tend to be more interesting than those that are frequent

Defining Negative Correlated Patterns (I)

- Definition 1 (support-based)
 - If itemsets X and Y are both frequent but rarely occur together, i.e., sup(X U Y) < sup (X) * sup(Y)
 - Then X and Y are negatively correlated
- Problem: A store sold two needle 100 packages A and B, only one transaction containing both A and B.
 - When there are in total 200 transactions, we have

s(A U B) = 0.005, s(A) * s(B) = 0.25, s(A U B) < s(A) * s(B)

• When there are 10⁵ transactions, we have

 $s(A \cup B) = 1/10^5$, $s(A) * s(B) = 1/10^3 * 1/10^3$, $s(A \cup B) > s(A) * s(B)$

Where is the problem? —Null transactions, i.e., the support-based definition is not null-invariant!

Defining Negative Correlated Patterns (II)

- Definition 2 (negative itemset-based)
 - X is a *negative itemset* if (1) $X = \overline{A} \cup B$, where B is a set of positive items, and \overline{A} is a set of negative items, $|\overline{A}| \ge 1$, and (2) $s(X) \ge \mu$
 - Itemsets X is negatively correlated, if

 $s(X) < \prod_{i=1}^{k} s(x_i), where \ x_i \in X, and \ s(x_i) is the support of \ x_i$

- This definition suffers a similar null-invariant problem
- Definition 3 (Kulzynski measure-based) If itemsets X and Y are frequent, but (P(X|Y) + P(Y|X))/2 < ε, where ε is a negative pattern threshold, then X and Y are negatively correlated.
- Ex. For the same needle package problem, when no matter there are 200 or 10⁵ transactions, if ε = 0.01, we have (P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < ε

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining

- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining constraint-based mining: constraint-pushing, similar to push selection first in DB query processing
 - Note: still find all the answers satisfying constraints, not finding some answers in "heuristic search"

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago this year
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Meta-Rule Guided Mining

 Meta-rule can be in the rule form with partially instantiated predicates and constants

 $P_1(X, Y) \land P_2(X, W) => buys(X, "iPad")$

• The resulting rule derived can be

age(X, "15-25") ^ profession(X, "student") => buys(X, "iPad")

In general, it can be in the form of

 $P_1 \land P_2 \land \dots \land P_l => Q_1 \land Q_2 \land \dots \land Q_r$

- Method to find meta-rules
 - Find frequent (l+r) predicates (based on min-support threshold)
 - Push constants deeply when possible into the mining process (see the remaining discussions on constraint-push techniques)
 - Use confidence, correlation, and other measures when possible

Constraint-Based Frequent Pattern Mining

- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: c must be satisfied, so one can start with the data sets satisfying c
 - Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered
- Data space pruning constraint
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining

Pattern Space Pruning with Anti-Monotonicity Constraints

- A constraint C is *anti-monotone* if the super pattern satisfies C, all of its sub-patterns do so too
- In other words, *anti-monotonicity:* If an itemset
 S violates the constraint, so does any of its superset
- Ex. 1. $sum(S.price) \le v$ is anti-monotone
- Ex. 2. range(S.profit) ≤ 15 is anti-monotone
 - Itemset *ab* violates C
 - So does every superset of *ab*
- Ex. 3. $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. *support count* is anti-monotone: core property used in Apriori

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

23

Pattern Space Pruning with Monotonicity Constraints

- A constraint C is *monotone* if the pattern satisfies C, we do not need to check C in subsequent mining
- Alternatively, monotonicity: If an itemset S satisfies the constraint, so does any of its superset
- Ex. 1. $sum(S.Price) \ge v$ is monotone
- Ex. 2. $min(S.Price) \le v$ is monotone
- Ex. 3. C: range(S.profit) ≥ 15
 - Itemset *ab* satisfies C
 - So does every superset of *ab*

$1DD (mm_sup-2)$	
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

TDR $(\min \text{ sup}-2)$

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Data Space Pruning with Data Anti-monotonicity

- A constraint c is *data anti-monotone* if for a pattern p cannot satisfy a transaction t under c, p's superset cannot satisfy t under c either
- The key for data anti-monotone is *recursive data reduction*
- Ex. 1. $sum(S.Price) \ge v$ is data anti-monotone
- Ex. 2. $min(S.Price) \le v$ is data anti-monotone
- Ex. 3. C: range(S.profit) ≥ 25 is data antimonotone
 - Itemset {b, c}'s projected DB:
 - T10': {d, f, h}, T20': {d, f, g, h}, T30': {d, f, g}
 - since C cannot satisfy T10', T10' can be pruned

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	-5

25

TDB (min_sup=2)

Pattern Space Pruning with Succinctness

Succinctness:

- Given A₁, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A₁, i.e., S contains a subset belonging to A₁
- Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
- $min(S.Price) \le v$ is succinct
- $sum(S.Price) \ge v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

Naïve Algorithm: Apriori + Constraint

Constrained Apriori : Push a Succinct Constraint Deep

Constrained FP-Growth: Push a Succinct Constraint Deep

TIDItems1003 43002 3 5

No Need to project on 2, 3, or 5

Constraint:

min{S.price } <= 1</pre>

Constrained FP-Growth: Push a Data Anti-monotonic Constraint Deep

Single branch, we are done

Constraint:

 $min{S.price} <= 1$

Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order

a, f, g, d, b, h, c, e>

- If an itemset *afb* violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)	
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Strongly Convertible Constraints

- avg(X) ≥ 25 is convertible anti-monotone w.r.t. item value descending order R: <*a*, *f*, *g*, *d*, *b*, *h*, *c*, *e*>
 - If an itemset *af* violates a constraint C, so does every itemset with *af* as prefix, such as *afd*
- avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: <*e*, *c*, *h*, *b*, *d*, *g*, *f*, *a*>
 - If an itemset *d* satisfies a constraint *C*, so does itemsets *df* and *dfa*, which having *d* as a prefix
- Thus, avg(X) ≥ 25 is strongly convertible

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraints?

- A convertible, not monotone nor anti-monotone nor succinct constraint cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - Itemset df violates constraint C: avg(X) >=
 25
 - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- But it can be pushed into frequent-pattern growth framework!

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Pattern Space Pruning w. Convertible Constraints

- C: avg(X) >= 25, min_sup=2
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)-monotone

Item Value a 40 f 30
a 40 f 30
f 30
g 20
d 10
b 0
h -10
c -20
e -30
ГDB (min_sup=2)

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e
-	3

Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C₁ and C₂ are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database
What Constraints Are Convertible?

Constraint	Convertible anti- monotone	Convertible monotone	Strongly convertible
$avg(S) \le , \ge v$	Yes	Yes	Yes
median(S) \leq , \geq v	Yes	Yes	Yes
$sum(S) \le v$ (items could be of any value, $v \ge 0$)	Yes	No	No
$sum(S) \le v$ (items could be of any value, $v \le 0$)	No	Yes	No
$sum(S) \ge v$ (items could be of any value, $v \ge 0$)	No	Yes	No
$sum(S) \ge v$ (items could be of any value, $v \le 0$)	Yes	No	No

Constraint-Based Mining — A General Picture

Constraint	Anti-monotone	Monotone	Succinct
V ∈ S	no	yes	yes
S ⊇ V	no	yes	yes
S⊆V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes	no	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible	convertible	no
support(S) ≥ ξ	yes	no	no
support(S) ≤ ξ	no	yes	no

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Mining Colossal Frequent Patterns

- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07.
- We have many algorithms, but can we mine large (i.e., colossal) patterns? — such as just size around 50 to 100? Unfortunately, not!
- Why not? the curse of "downward closure" of frequent patterns
 - The "downward closure" property
 - Any sub-pattern of a frequent pattern is frequent.
 - Example. If (a₁, a₂, ..., a₁₀₀) is frequent, then a₁, a₂, ..., a₁₀₀, (a₁, a₂), (a₁, a₃), ..., (a₁, a₁₀₀), (a₁, a₂, a₃), ... are all frequent! There are about 2¹⁰⁰ such frequent itemsets!
 - No matter using breadth-first search (e.g., Apriori) or depth-first search (FPgrowth), we have to examine so many patterns
- Thus the downward closure property leads to explosion!

Colossal Patterns: A Motivating Example

Let's make a set of 40 transactions

```
T1 = 1 2 3 4 ..... 39 40
```

```
T2 = 1 2 3 4 ..... 39 40
```

1

T40=1 2 3 4 39 40

Then delete the items on the diagonal

Closed/maximal patterns may partially alleviate the problem but not really solve it: We often need to mine scattered large patterns!

Let the minimum support threshold $\sigma = 20$ There are $\begin{pmatrix} 40 \\ 20 \end{pmatrix}$ frequent patterns of

size 20 size 20

Each is closed and maximal

patterns =
$$\binom{n}{n/2} \approx \sqrt{2/\pi} \frac{2^n}{\sqrt{n}}$$

The size of the answer set is exponential to n

Colossal Pattern Set: Small but Interesting

- It is often the case that only a small number of patterns are colossal, i.e., of large size
- i.e., of large size
 Colossal patterns are usually attached with greater importance than those of small pattern sizes

Mining Colossal Patterns: Motivation and Philosophy

- Motivation: Many real-world tasks need mining colossal patterns
 - Micro-array analysis in bioinformatics (when support is low)
 - Biological sequence patterns
 - Biological/sociological/information graph pattern mining
- No hope for completeness
 - If the mining of mid-sized patterns is explosive in size, there is no hope to find colossal patterns efficiently by insisting "complete set" mining philosophy
- Jumping out of the swamp of the mid-sized results
 - What we may develop is a philosophy that may jump out of the swamp of mid-sized results that are explosive in size and jump to reach colossal patterns
- Striving for mining almost complete colossal patterns
 - The key is to develop a mechanism that may quickly reach colossal patterns and discover most of them

Alas, A Show of Colossal Pattern Mining!

$T_1 = 23$	34	39 40
$T_2 = 13$	34	39 40
:	•	
:	-	
:	-	I
:		•
T40=1 2	34	39
T40=1 2 T41= 41	3 4 42 43	39 79
$T_{40}=12$ $T_{41}=41$ $T_{42}=41$	3 4 42 43 42 43	39 79 79
$T_{40}=12$ $T_{41}=41$ $T_{42}=41$:	2 3 4 42 43 42 43	39 79 79
T40=1 2 T41= 41 T42= 41 : :	3 4 42 43 42 43	39 79 79

Let the min-support threshold $\sigma = 20$ Then there are $\begin{pmatrix} 40 \\ 20 \end{pmatrix}$ closed/maximal frequent patterns of size 20

However, there is only one with size greater than 20, (*i.e.*, colossal):

The existing fastest mining algorithms (*e.g.,* FPClose, LCM) fail to complete running

Our algorithm outputs this colossal pattern in seconds

Methodology of Pattern-Fusion Strategy

- Pattern-Fusion traverses the tree in a bounded-breadth way
 - Always pushes down a frontier of a bounded-size candidate pool
 - Only a fixed number of patterns in the current candidate pool will be used as the starting nodes to go down in the pattern tree
 — thus avoids the exponential search space
- Pattern-Fusion identifies "shortcuts" whenever possible
 - Pattern growth is not performed by single-item addition but by leaps and bounded: agglomeration of multiple patterns in the pool
 - These shortcuts will direct the search down the tree much more rapidly towards the colossal patterns

Observation: Colossal Patterns and Core Patterns

Subpatterns α_1 to α_k cluster tightly around the colossal pattern α by sharing a similar support. We call such subpatterns *core patterns* of α

Robustness of Colossal Patterns

Core Patterns

Intuitively, for a frequent pattern α , a subpattern β is a τ -core pattern of α if β shares a similar support set with α , i.e.,

$$\frac{\mid D_{\alpha}\mid}{\mid D_{\beta}\mid} \geq \tau \qquad 0 < \tau \leq 1$$

where τ is called the core ratio

Robustness of Colossal Patterns

A colossal pattern is robust in the sense that it tends to have much more core patterns than small patterns

Example: Core Patterns

- A colossal pattern has far more core patterns than a small-sized pattern
- A colossal pattern has far more core descendants of a smaller size c
- A random draw from a complete set of pattern of size c would more likely to pick a core descendant of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

Transaction (# of Ts)	Core Patterns ($\tau = 0.5$)
(abe) (100)	(abe), (ab), (be), (ae), (e)
(bcf) (100)	(bcf), (bc), (bf)
(acf) (100)	(acf), (ac), (af)
(abcef) (100)	(ab), (ac), (af), (ae), (bc), (bf), (be) (ce), (fe), (e), (abc), (abf), (abe), (ace), (acf), (afe), (bcf), (bce), (bfe), (cfe), (abcf), (abce), (bcfe), (acfe), (abfe), (abcef)

Colossal Patterns Correspond to Dense Balls

- Due to their robustness, colossal patterns correspond to dense balls
 - Ω(2^d) in population
- A random draw in the pattern space will hit somewhere in the ball with high probability

Idea of Pattern-Fusion Algorithm

- Generate a complete set of frequent patterns up to a small size
- Randomly pick a pattern β, and β has a high probability to be a core-descendant of some colossal pattern a
- Identify all a's descendants in this complete set, and merge all of them — This would generate a much larger core-descendant of a
- In the same fashion, we select K patterns. This set of larger core-descendants will be the candidate pool for the next iteration

Pattern-Fusion: The Algorithm

- Initialization (Initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (Iterative Pattern Fusion):
 - At each iteration, k seed patterns are randomly picked from the current pattern pool
 - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
 - All these patterns found are fused together to generate a set of super-patterns. All the super-patterns thus generated form a new pool for the next iteration
- Termination: when the current pool contains no more than K patterns at the beginning of an iteration

Why Is Pattern-Fusion Efficient?

- A bounded-breadth pattern tree traversal
 - It avoids explosion in mining mid-sized ones
 - Randomness comes to help to stay on the right path
- Ability to identify "short-cuts" and take "leaps"
 - fuse small patterns together in one step to generate new patterns of significant sizes
 - Efficiency

Pattern-Fusion Leads to Good Approximation

- Gearing toward colossal patterns
 - The larger the pattern, the greater the chance it will be generated
- Catching outliers
 - The more distinct the pattern, the greater the chance it will be generated

Experimental Setting

- Synthetic data set
 - Diag_n an n x (n-1) table where ith row has integers from 1 to n except i. Each row is taken as an itemset. min_support is n/2.
- Real data set
 - Replace: A program trace data set collected from the "replace" program, widely used in software engineering research
 - ALL: A popular gene expression data set, a clinical data on ALL-AML leukemia (<u>www.broad.mit.edu/tools/data.html</u>).
 - Each item is a column, representing the activitiy level of gene/protein in the same
 - Frequent pattern would reveal important correlation between gene expression patterns and disease outcomes

Experiment Results on Diag_n

- LCM run time increases exponentially with pattern size n
- Pattern-Fusion finishes efficiently
- The approximation error of Pattern-Fusion (with min-sup 20) in comparison with the complete set) is rather close to uniform sampling (which randomly picks K patterns from the complete answer set)

Experimental Results on ALL

- ALL: A popular gene expression data set with 38 transactions, each with 866 columns
 - There are 1736 items in total
 - The table shows a high frequency threshold of 30

Experimental Results on REPLACE

REPLACE

- A program trace data set, recording 4395 calls and transitions
- The data set contains 4395 transactions with 57 items in total
- With support threshold of 0.03, the largest patterns are of size 44
- They are all discovered by Pattern-Fusion with different settings of K and τ, when started with an initial pool of 20948 patterns of size <=3

Experimental Results on REPLACE

- Approximation error when compared with the complete mining result
- Example. Out of the total 98 patterns of size >=42, when K=100, Pattern-Fusion returns 80 of them
- A good approximation to the colossal patterns in the sense that any pattern in the complete set is on average at most 0.17 items away from one of these 80 patterns

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns

- Pattern Exploration and Application
- Summary

Mining Compressed Patterns: δ -clustering

- Why compressed patterns?
 - too many, but less meaningful
- Pattern distance measure

 $D(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$

- δ-clustering: For each pattern P, find all patterns which can be expressed by P and their distance to P are within δ (δ-cover)
- All patterns in the cluster can be represented by P
- Xin et al., "Mining Compressed Frequent-Pattern Sets", VLDB'05

ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
P3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
Р5	{39,16,18,12}	161576

- Closed frequent pattern
 - Report P1, P2, P3, P4, P5
 - Emphasize too much on support
 - no compression
- Max-pattern, P3: info loss
- A desirable output: P2, P3, P4

Redundancy-Award Top-k Patterns

- Why redundancy-aware top-k patterns?
- Desired patterns: high significance & low redundancy
- Propose the MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06 (c) traditional top-k

(a) a set of patterns

(b) redundancy-aware top-k

(d) summarization

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

How to Understand and Interpret Patterns?

Annotate patterns with semantic information

A Dictionary Analogy

Semantic Analysis with Context Models

- Task1: Model the context of a frequent pattern
 Based on the Context Model...
- Task2: Extract strongest context indicators
- Task3: Extract representative transactions
- Task4: Extract semantically similar patterns

Annotating DBLP Co-authorship & Title Pattern

Pattern = {xifeng_yan, jiawei_han}

Annotation Results:

Context Indicator (CI)	graph; {philip_yu}; mine close; graph pattern; sequential pattern;	
Representative Transactions (Trans)	 > gSpan: graph-base substructure pattern mining; > mining close relational graph connect constraint; 	
Semantically Similar Patterns (SSP)	{jiawei_han, philip_yu}; {jian_pei, jiawei_han}; {jiong_yang, philip_yu, wei_wang};	

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application

Summary

- Roadmap: Many aspects & extensions on pattern mining
- Mining patterns in multi-level, multi dimensional space
- Mining rare and negative patterns
- Constraint-based pattern mining
- Specialized methods for mining high-dimensional data and colossal patterns
- Mining compressed or approximate patterns
- Pattern exploration and understanding: Semantic annotation of frequent patterns

Ref: Mining Multi-Level and Quantitative Rules

- Y. Aumann and Y. Lindell. A Statistical Theory for Quantitative Association Rules, KDD'99
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95.
- R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97.
- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96.
- K. Wang, Y. He, and J. Han. Mining frequent itemsets using support constraints. VLDB'00
- K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear regions for association rules. KDD'97.

Ref: Mining Other Kinds of Rules

- F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98
- Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of Functional and Approximate Dependencies Using Partitions. ICDE'98.
- H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern Extraction with Fascicles. VLDB'99
- B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97.
- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96.
- A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of customer transactions. ICDE'98.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov.
 Query flocks: A generalization of association-rule mining. SIGMOD'98.

Ref: Constraint-Based Pattern Mining

- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang. Exploratory mining and pruning optimizations of constrained association rules. SIGMOD'98
- G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan. Mining Frequent Itemsets with Convertible Constraints. ICDE'01
- J. Pei, J. Han, and W. Wang, Mining Sequential Patterns with Constraints in Large Databases, CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated Data Reduction in Constrained Pattern Mining, PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07

Ref: Mining Sequential Patterns

- X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing subsequence patterns with gap constraints. ICDM'05
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01.
- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT'96.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning:01.
Mining Graph and Structured Patterns

- A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. *PKDD'00*
- M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. ICDM'01.
- X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. ICDM'02
- X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. KDD'03
- X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent structure analysis. ACM TODS, 30:960–993, 2005
- X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based substructure similarity search. ACM Trans. Database Systems, 31:1418–1453, 2006

Ref: Mining Spatial, Spatiotemporal, Multimedia Data

- H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatiotemporal sequential patterns. ICDM'05
- D. Gunopulos and I. Tsoukatos. Efficient Mining of Spatiotemporal Patterns.
 SSTD'01
- K. Koperski and J. Han, Discovery of Spatial Association Rules in Geographic Information Databases, SSD'95
- H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, and J. S. Yoo. A framework for discovering co-location patterns in data sets with extended spatial objects. SDM'04
- J. Yuan, Y. Wu, and M. Yang. Discovery of collocation patterns: From visual words to visual phrases. CVPR'07
- O. R. Zaiane, J. Han, and H. Zhu, Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. ICDE'00

Ref: Mining Frequent Patterns in Time-Series Data

- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- J. Shieh and E. Keogh. iSAX: Indexing and mining terabyte sized time series. *KDD'08*
- B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris. Online Data Mining for Co-Evolving Time Sequences. ICDE'00.
- W. Wang, J. Yang, R. Muntz. TAR: Temporal Association Rules on Evolving Numerical Attributes. ICDE'01.
- J. Yang, W. Wang, P. S. Yu. Mining Asynchronous Periodic Patterns in Time Series Data. TKDE'03
- L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. *KDD'09*

Ref: FP for Classification and Clustering

- G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. KDD'99.
- B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule Mining. KDD'98.
- W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. ICDM'01.
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets. SIGMOD' 02.
- J. Yang and W. Wang. CLUSEQ: efficient and effective sequence clustering. ICDE'03.
- X. Yin and J. Han. CPAR: Classification based on Predictive Association Rules. SDM'03.
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification", ICDE'07

Ref: Privacy-Preserving FP Mining

- A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke. Privacy Preserving Mining of Association Rules. KDD'02.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting Privacy Breaches in Privacy Preserving Data Mining. PODS'03
- J. Vaidya and C. Clifton. Privacy Preserving Association Rule Mining in Vertically Partitioned Data. KDD'02

Mining Compressed Patterns

- D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancyaware top-k patterns. *KDD'06*
- D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. VLDB'05
- X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: A profile-based approach. *KDD'05*

Mining Colossal Patterns

- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns by core pattern fusion. ICDE'07
- F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han. P. S. Yu, Mining Top-K Large Structural Patterns in a Massive Network. VLDB'11

Ref: FP Mining from Data Streams

- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-Dimensional Regression Analysis of Time-Series Data Streams. VLDB'02.
- R. M. Karp, C. H. Papadimitriou, and S. Shenker. A simple algorithm for finding frequent elements in streams and bags. *TODS* 2003.
- G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. VLDB'02.
- A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and top-k elements in data streams. *ICDT'05*

Ref: Freq. Pattern Mining Applications

- T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02
- M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han. DustMiner: Troubleshooting interactive complexity bugs in sensor networks., SenSys'08
- Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste and related bugs in operating system code. In Proc. 2004 Symp. Operating Systems Design and Implementation (OSDI'04)
- Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit programming rules and detecting violations in large software code. *FSE'05*
- D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun. Classification of software behaviors for failure detection: A discriminative pattern mining approach. *KDD'09*
- Q. Mei, D. Xin, H. Cheng, J. Han, and C. Zhai. Semantic annotation of frequent patterns. ACM TKDD, 2007.
- K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT'02.