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Supervised vs. Unsupervised Learning

 Supervised learning (classification)

 Supervision: The training data (observations, 

measurements, etc.) are accompanied by labels indicating 

the class of the observations

 New data is classified based on the training set

 Unsupervised learning (clustering)

 The class labels of training data is unknown

 Given a set of measurements, observations, etc. with the 

aim of establishing the existence of classes or clusters in 

the data
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 Classification

 predicts categorical class labels (discrete or nominal)

 classifies data (constructs a model) based on the training 
set and the values (class labels) in a classifying attribute 
and uses it in classifying new data

 Numeric Prediction  

 models continuous-valued functions, i.e., predicts 
unknown or missing values 

 Typical applications

 Credit/loan approval:

 Medical diagnosis: if a tumor is cancerous or benign

 Fraud detection: if a transaction is fraudulent

 Web page categorization: which category it is

Prediction Problems: Classification vs. 
Numeric Prediction
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Classification—A Two-Step Process

 Model construction: describing a set of predetermined classes

 Each tuple/sample is assumed to belong to a predefined class, as 
determined by the class label attribute

 The set of tuples used for model construction is training set

 The model is represented as classification rules, decision trees, or 
mathematical formulae

 Model usage: for classifying future or unknown objects

 Estimate accuracy of the model

 The known label of test sample is compared with the classified 
result from the model

 Accuracy rate is the percentage of test set samples that are 
correctly classified by the model

 Test set is independent of training set (otherwise overfitting) 

 If the accuracy is acceptable, use the model to classify new data

 Note: If the test set is used to select models, it is called validation (test) set
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Process (1): Model Construction

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)
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Process (2): Using the Model in Prediction 

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?
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Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

 Training data set: Buys_computer
 The data set follows an example of 

Quinlan’s ID3 (Playing Tennis)
 Resulting tree:
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Algorithm for Decision Tree Induction

 Basic algorithm (a greedy algorithm)
 Tree is constructed in a top-down recursive divide-and-

conquer manner
 At start, all the training examples are at the root
 Attributes are categorical (if continuous-valued, they are 

discretized in advance)
 Examples are partitioned recursively based on selected 

attributes
 Test attributes are selected on the basis of a heuristic or 

statistical measure (e.g., information gain)
 Conditions for stopping partitioning

 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf
 There are no samples left



Brief Review of Entropy



12

m = 2
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain

 Let pi be the probability that an arbitrary tuple in D belongs to 

class Ci, estimated by |Ci, D|/|D|

 Expected information (entropy) needed to classify a tuple in D:

 Information needed (after using A to split D into v partitions) to 

classify D:

 Information gained by branching on attribute A
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Attribute Selection: Information Gain

 Class P: buys_computer = “yes”

 Class N: buys_computer = “no”

means “age <=30” has 5 out of 

14 samples, with 2 yes’es  and 3 

no’s.   Hence

Similarly,

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971

694.0)2,3(
14

5

)0,4(
14

4
)3,2(

14

5
)(





I

IIDInfoage

048.0)_(

151.0)(

029.0)(







ratingcreditGain

studentGain

incomeGain

246.0)()()(  DInfoDInfoageGain age
age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Computing Information-Gain for 
Continuous-Valued Attributes

 Let attribute A be a continuous-valued attribute

 Must determine the best split point for A

 Sort the value A in increasing order

 Typically, the midpoint between each pair of adjacent values 

is considered as a possible split point

 (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

 The point with the minimum expected information 

requirement for A is selected as the split-point for A

 Split:

 D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is 

the set of tuples in D satisfying A > split-point
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Gain Ratio for Attribute Selection (C4.5)

 Information gain measure is biased towards attributes with a 
large number of values

 C4.5 (a successor of ID3) uses gain ratio to overcome the 
problem (normalization to information gain)

 GainRatio(A) = Gain(A)/SplitInfo(A)

 Ex.

 gain_ratio(income) = 0.029/1.557 = 0.019

 The attribute with the maximum gain ratio is selected as the 
splitting attribute
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Gini Index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, 
gini(D) is defined as

where pj is the relative frequency of class j in D

 If a data set D is split on A into two subsets D1 and D2, the gini
index gini(D) is defined as

 Reduction in Impurity:

 The attribute provides the smallest ginisplit(D) (or the largest 
reduction in impurity) is chosen to split the node (need to 
enumerate all the possible splitting points for each attribute)
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Computation of Gini Index 

 Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

 Suppose the attribute income partitions D into 10 in D1: {low, 
medium} and 4 in D2

Gini{low,high} is 0.458; Gini{medium,high} is 0.450.  Thus, split on the 
{low,medium} (and {high}) since it has the lowest Gini index

 All attributes are assumed continuous-valued

 May need other tools, e.g., clustering, to get the possible split 
values

 Can be modified for categorical attributes
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Comparing Attribute Selection Measures

 The three measures, in general, return good results but

 Information gain: 

 biased towards multivalued attributes

 Gain ratio: 

 tends to prefer unbalanced splits in which one partition is 

much smaller than the others

 Gini index: 

 biased to multivalued attributes

 has difficulty when # of classes is large

 tends to favor tests that result in equal-sized partitions 

and purity in both partitions
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Other Attribute Selection Measures

 CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence

 C-SEP: performs better than info. gain and gini index in certain cases

 G-statistic: has a close approximation to χ2 distribution 

 MDL (Minimal Description Length) principle (i.e., the simplest solution is 

preferred): 

 The best tree as the one that requires the fewest # of bits to both (1) 

encode the tree, and (2) encode the exceptions to the tree

 Multivariate splits (partition based on multiple variable combinations)

 CART: finds multivariate splits based on a linear comb. of attrs.

 Which attribute selection measure is the best?

 Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

 Overfitting:  An induced tree may overfit the training data 

 Too many branches, some may reflect anomalies due to 
noise or outliers

 Poor accuracy for unseen samples

 Two approaches to avoid overfitting 

 Prepruning: Halt tree construction early ̵ do not split a node 
if this would result in the goodness measure falling below a 
threshold

 Difficult to choose an appropriate threshold

 Postpruning: Remove branches from a “fully grown” tree—
get a sequence of progressively pruned trees

 Use a set of data different from the training data to 
decide which is the “best pruned tree”
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Enhancements to Basic Decision Tree Induction

 Allow for continuous-valued attributes

 Dynamically define new discrete-valued attributes that 

partition the continuous attribute value into a discrete set of 

intervals

 Handle missing attribute values

 Assign the most common value of the attribute

 Assign probability to each of the possible values

 Attribute construction

 Create new attributes based on existing ones that are 

sparsely represented

 This reduces fragmentation, repetition, and replication
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Classification in Large Databases

 Classification—a classical problem extensively studied by 

statisticians and machine learning researchers

 Scalability: Classifying data sets with millions of examples and 

hundreds of attributes with reasonable speed

 Why is decision tree induction popular?

 relatively faster learning speed (than other classification 
methods)

 convertible to simple and easy to understand classification 
rules

 can use SQL queries for accessing databases
 comparable classification accuracy with other methods

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
 Builds an AVC-list (attribute, value, class label)
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Scalability Framework for RainForest

 Separates the scalability aspects from the criteria that 

determine the quality of the tree 

 Builds an AVC-list: AVC (Attribute, Value, Class_label) 

 AVC-set  (of an attribute X )

 Projection of training dataset onto the attribute X and 

class label where counts of individual class label are 

aggregated

 AVC-group  (of a node n )

 Set of AVC-sets of all predictor attributes at the node n
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Rainforest:  Training Set and Its AVC Sets 

student Buy_Computer

yes no

yes 6 1

no 3 4

Age Buy_Computer

yes no

<=30 2 3

31..40 4 0

>40 3 2

Credit

rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

AVC-set on incomeAVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on 
credit_rating
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BOAT (Bootstrapped Optimistic 
Algorithm for Tree Construction)

 Use a statistical technique called bootstrapping to create 

several smaller samples (subsets), each fits in memory

 Each subset is used to create a tree, resulting in several 

trees 

 These trees are examined and used to construct a new 

tree T’

 It turns out that T’ is very close to the tree that would 

be generated using the whole data set together

 Adv: requires only two scans of DB, an incremental alg.
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Presentation of Classification Results
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Visualization of a Decision Tree in SGI/MineSet 3.0
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Interactive Visual Mining by Perception-
Based Classification (PBC)
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Bayesian Classification: Why?

 A statistical classifier: performs probabilistic prediction, i.e.,

predicts class membership probabilities

 Foundation: Based on Bayes’ Theorem. 

 Performance: A simple Bayesian classifier, naïve Bayesian 

classifier, has comparable performance with decision tree and 

selected neural network classifiers

 Incremental: Each training example can incrementally 

increase/decrease the probability that a hypothesis is correct —

prior knowledge can be combined with observed data

 Standard: Even when Bayesian methods are computationally 

intractable, they can provide a standard of optimal decision 

making against which other methods can be measured
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Bayes’ Theorem: Basics

 Total probability Theorem:

 Bayes’ Theorem:

 Let X be a data sample (“evidence”): class label is unknown

 Let H be a hypothesis that X belongs to class C 

 Classification is to determine P(H|X), (i.e., posteriori probability): the 
probability that the hypothesis holds given the observed data sample X

 P(H) (prior probability): the initial probability

 E.g., X will buy computer, regardless of age, income, …

 P(X): probability that sample data is observed

 P(X|H) (likelihood): the probability of observing the sample X, given that 
the hypothesis holds

 E.g., Given that X will buy computer, the prob. that X is 31..40, 
medium income
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Prediction Based on Bayes’ Theorem

 Given training data X, posteriori probability of a hypothesis H, 

P(H|X), follows the Bayes’ theorem

 Informally, this can be viewed as 

posteriori = likelihood x prior/evidence

 Predicts X belongs to Ci iff the probability P(Ci|X) is the highest 

among all the P(Ck|X) for all the k classes

 Practical difficulty:  It requires initial knowledge of many 

probabilities, involving significant computational cost
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Classification Is to Derive the Maximum Posteriori

 Let D be a training set of tuples and their associated class 
labels, and each tuple is represented by an n-D attribute vector 
X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.

 Classification is to derive the maximum posteriori, i.e., the 
maximal P(Ci|X)

 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only                                        

needs to be maximized
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Naïve Bayes Classifier 

 A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between 
attributes):

 This greatly reduces the computation cost: Only counts the 
class distribution

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk

for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continous-valued, P(xk|Ci) is usually computed based on 
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is 
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Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data to be classified: 

X = (age <=30, 

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Naïve Bayes Classifier: An Example

 P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

 Compute P(X|Ci) for each class

P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2

P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

 X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Avoiding the Zero-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be 
non-zero.  Otherwise, the predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, income=low (0), 
income= medium (990), and income = high (10)

 Use Laplacian correction (or Laplacian estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The “corrected” prob. estimates are close to their 
“uncorrected” counterparts
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Naïve Bayes Classifier: Comments

 Advantages 

 Easy to implement 

 Good results obtained in most of the cases

 Disadvantages

 Assumption: class conditional independence, therefore loss 
of accuracy

 Practically, dependencies exist among variables 

 E.g.,  hospitals: patients: Profile: age, family history, etc. 

Symptoms: fever, cough etc., Disease: lung cancer, 
diabetes, etc. 

 Dependencies among these cannot be modeled by Naïve 
Bayes Classifier

 How to deal with these dependencies? Bayesian Belief Networks 
(Chapter 9)
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Using IF-THEN Rules for Classification

 Represent the knowledge in the form of IF-THEN rules

R:  IF age = youth AND student = yes  THEN buys_computer = yes

 Rule antecedent/precondition vs. rule consequent

 Assessment of a rule: coverage and accuracy

 ncovers = # of tuples covered by R

 ncorrect = # of tuples correctly classified by R

coverage(R) = ncovers /|D|   /* D: training data set */

accuracy(R) = ncorrect / ncovers

 If more than one rule are triggered, need conflict resolution

 Size ordering: assign the highest priority to the triggering rules that has 
the “toughest” requirement (i.e., with the most attribute tests)

 Class-based ordering: decreasing order of prevalence or misclassification 
cost per class

 Rule-based ordering (decision list): rules are organized into one long 
priority list, according to some measure of rule quality or by experts
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age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

 Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes

Rule Extraction from a Decision Tree

 Rules are easier to understand than large 
trees

 One rule is created for each path from the 
root to a leaf

 Each attribute-value pair along a path forms a 
conjunction: the leaf holds the class 
prediction 

 Rules are mutually exclusive and exhaustive
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Rule Induction: Sequential Covering Method

 Sequential covering algorithm: Extracts rules directly from training 
data

 Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

 Rules are learned sequentially, each for a given class Ci will cover 
many tuples of Ci but none (or few) of the tuples of other classes

 Steps: 

 Rules are learned one at a time

 Each time a rule is learned, the tuples covered by the rules are 
removed

 Repeat the process on the remaining tuples until termination 
condition, e.g., when no more training examples or when the 
quality of a rule returned is below a user-specified threshold

 Comp. w. decision-tree induction: learning a set of rules 
simultaneously
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Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Examples covered

by Rule 3

Examples covered

by Rule 2Examples covered

by Rule 1

Positive 

examples
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Rule Generation

 To generate a rule

while(true)

find the best predicate p

if foil-gain(p) > threshold then add p to current rule

else break

Positive 

examples

Negative 

examples

A3=1
A3=1&&A1=2

A3=1&&A1=2

&&A8=5
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How to Learn-One-Rule?

 Start with the most general rule possible: condition = empty

 Adding new attributes by adopting a greedy depth-first strategy

 Picks the one that most improves the rule quality

 Rule-Quality measures: consider both coverage and accuracy

 Foil-gain (in FOIL & RIPPER): assesses info_gain by extending 
condition

 favors rules that have high accuracy and cover many positive tuples

 Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R
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Model Evaluation and Selection

 Evaluation metrics: How can we measure accuracy?  Other 

metrics to consider?

 Use validation test set of class-labeled tuples instead of 

training set when assessing accuracy

 Methods for estimating a classifier’s accuracy: 

 Holdout method, random subsampling

 Cross-validation

 Bootstrap

 Comparing classifiers:

 Confidence intervals

 Cost-benefit analysis and ROC Curves
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Classifier Evaluation Metrics: Confusion 
Matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

 Given m classes, an entry, CMi,j in a confusion matrix indicates 
# of tuples in class i that were labeled by the classifier as class j

 May have extra rows/columns to provide totals

Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Classifier Evaluation Metrics: Accuracy, 
Error Rate, Sensitivity and Specificity

 Classifier Accuracy, or 
recognition rate: percentage of 
test set tuples that are correctly 
classified

Accuracy = (TP + TN)/All

 Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

 Class Imbalance Problem: 

 One class may be rare, e.g. 
fraud, or HIV-positive

 Significant majority of the 
negative class and minority of 
the positive class

 Sensitivity: True Positive 
recognition rate

 Sensitivity = TP/P

 Specificity: True Negative 
recognition rate

 Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

 Precision: exactness – what % of tuples that the classifier 
labeled as positive are actually positive

 Recall: completeness – what % of positive tuples did the 
classifier label as positive?

 Perfect score is 1.0

 Inverse relationship between precision & recall
 F measure (F1 or F-score): harmonic mean of precision and 

recall,

 Fß:  weighted measure of precision and recall
 assigns ß times as much weight to recall as to precision
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Classifier Evaluation Metrics: Example

52

 Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)



Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

 Holdout method
 Given data is randomly partitioned into two independent sets

 Training set (e.g., 2/3) for model construction
 Test set (e.g., 1/3) for accuracy estimation

 Random sampling: a variation of holdout
 Repeat holdout k times, accuracy = avg. of the accuracies 

obtained
 Cross-validation (k-fold, where k = 10 is most popular)

 Randomly partition the data into k mutually exclusive subsets, 
each approximately equal size

 At i-th iteration, use Di as test set and others as training set
 Leave-one-out: k folds where k = # of tuples, for small sized 

data
 *Stratified cross-validation*: folds are stratified so that class 

dist. in each fold is approx. the same as that in the initial data
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Evaluating Classifier Accuracy: Bootstrap

 Bootstrap

 Works well with small data sets

 Samples the given training tuples uniformly with replacement

 i.e., each time a tuple is selected, it is equally likely to be selected 

again and re-added to the training set

 Several bootstrap methods, and a common one is .632 boostrap

 A data set with d tuples is sampled d times, with replacement, resulting in 

a training set of d samples.  The data tuples that did not make it into the 

training set end up forming the test set.  About 63.2% of the original data 

end up in the bootstrap, and the remaining 36.8% form the test set (since 

(1 – 1/d)d ≈ e-1 = 0.368)

 Repeat the sampling procedure k times, overall accuracy of the model:
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Estimating Confidence Intervals:
Classifier Models M1 vs. M2

 Suppose we have 2 classifiers, M1 and M2, which one is better?

 Use 10-fold cross-validation to obtain                     and

 These mean error rates are just estimates of error on the true 

population of future data cases

 What if the difference between the 2 error rates is just 

attributed to chance?

 Use a test of statistical significance

 Obtain confidence limits for our error estimates
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Estimating Confidence Intervals:
Null Hypothesis

 Perform 10-fold cross-validation

 Assume samples follow a t distribution with k–1 degrees of 

freedom (here, k=10)

 Use t-test (or Student’s t-test)

 Null Hypothesis: M1 & M2 are the same

 If we can reject null hypothesis, then 

 we conclude that the difference between M1 & M2 is 

statistically significant

 Chose model with lower error rate
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Estimating Confidence Intervals: t-test

 If only 1 test set available: pairwise comparison

 For ith round of 10-fold cross-validation, the same cross 
partitioning is used to obtain err(M1)i and err(M2)i

 Average over 10 rounds to get 

 t-test computes t-statistic with k-1 degrees of 
freedom:

 If two test sets available: use non-paired t-test

where

and

where

where k1 & k2 are # of cross-validation samples used for M1 & M2, resp.
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Estimating Confidence Intervals:
Table for t-distribution

 Symmetric

 Significance level, 
e.g., sig = 0.05 or
5% means M1 & M2

are significantly 
different for 95% of 
population

 Confidence limit, z 
= sig/2
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Estimating Confidence Intervals:
Statistical Significance

 Are M1 & M2 significantly different?

 Compute t. Select significance level (e.g. sig = 5%)

 Consult table for t-distribution: Find t value corresponding 
to k-1 degrees of freedom (here, 9)

 t-distribution is symmetric: typically upper % points of 
distribution shown → look up value for confidence limit
z=sig/2 (here, 0.025)

 If t > z or t < -z, then t value lies in rejection region:

 Reject null hypothesis that mean error rates of M1 & M2

are same

 Conclude: statistically significant difference between M1

& M2

 Otherwise, conclude that any difference is chance
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Model Selection: ROC Curves

 ROC (Receiver Operating 
Characteristics) curves: for visual 
comparison of classification models

 Originated from signal detection theory

 Shows the trade-off between the true 
positive rate and the false positive rate

 The area under the ROC curve is a 
measure of the accuracy of the model

 Rank the test tuples in decreasing 
order: the one that is most likely to 
belong to the positive class appears at 
the top of the list

 The closer to the diagonal line (i.e., the 
closer the area is to 0.5), the less 
accurate is the model

 Vertical axis 
represents the true 
positive rate

 Horizontal axis rep. 
the false positive rate

 The plot also shows a 
diagonal line

 A model with perfect 
accuracy will have an 
area of 1.0
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Issues Affecting Model Selection

 Accuracy

 classifier accuracy: predicting class label

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases 

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision tree 

size or compactness of classification rules
61
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Ensemble Methods: Increasing the Accuracy

 Ensemble methods

 Use a combination of models to increase accuracy

 Combine a series of k learned models, M1, M2, …, Mk, with 
the aim of creating an improved model M*

 Popular ensemble methods

 Bagging: averaging the prediction over a collection of 
classifiers

 Boosting: weighted vote with a collection of classifiers

 Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

 Analogy: Diagnosis based on multiple doctors’ majority vote

 Training

 Given a set D of d tuples, at each iteration i, a training set Di of d tuples 
is sampled with replacement from D (i.e., bootstrap)

 A classifier model Mi is learned for each training set Di

 Classification: classify an unknown sample X

 Each classifier Mi returns its class prediction

 The bagged classifier M* counts the votes and assigns the class with the 
most votes to X

 Prediction: can be applied to the prediction of continuous values by taking 
the average value of each prediction for a given test tuple

 Accuracy

 Often significantly better than a single classifier derived from D

 For noise data: not considerably worse, more robust 

 Proved improved accuracy in prediction
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Boosting

 Analogy: Consult several doctors, based on a combination of 
weighted diagnoses—weight assigned based on the previous 
diagnosis accuracy

 How boosting works?

 Weights are assigned to each training tuple

 A series of k classifiers is iteratively learned

 After a classifier Mi is learned, the weights are updated to 
allow the subsequent classifier, Mi+1, to pay more attention to 
the training tuples that were misclassified by Mi

 The final M* combines the votes of each individual classifier, 
where the weight of each classifier's vote is a function of its 
accuracy

 Boosting algorithm can be extended for numeric prediction

 Comparing with bagging: Boosting tends to have greater accuracy, 
but it also risks overfitting the model to misclassified data

65



66

Adaboost (Freund and Schapire, 1997)

 Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)

 Initially, all the weights of tuples are set the same (1/d)

 Generate k classifiers in k rounds.  At round i,

 Tuples from D are sampled (with replacement) to form a training set 
Di of the same size

 Each tuple’s chance of being selected is based on its weight

 A classification model Mi is derived from Di

 Its error rate is calculated using Di as a test set

 If a tuple is misclassified, its weight is increased, o.w. it is decreased

 Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi
error rate is the sum of the weights of the misclassified tuples: 

 The weight of classifier Mi’s vote is
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Random Forest (Breiman 2001) 

 Random Forest: 

 Each classifier in the ensemble is a decision tree classifier and is 
generated using a random selection of attributes at each node to 
determine the split

 During classification, each tree votes and the most popular class is 
returned

 Two Methods to construct Random Forest:

 Forest-RI (random input selection):  Randomly select, at each node, F 
attributes as candidates for the split at the node. The CART methodology 
is used to grow the trees to maximum size

 Forest-RC (random linear combinations): Creates new attributes (or 
features) that are a linear combination of the existing attributes 
(reduces the correlation between individual classifiers)

 Comparable in accuracy to Adaboost, but more robust to errors and outliers 

 Insensitive to the number of attributes selected for consideration at each 
split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data Sets

 Class-imbalance problem: Rare positive example but numerous 
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc. 

 Traditional methods assume a balanced distribution of classes 
and equal error costs: not suitable for class-imbalanced data

 Typical methods for imbalance data in 2-class classification: 

 Oversampling: re-sampling of data from positive class

 Under-sampling: randomly eliminate  tuples from negative 
class

 Threshold-moving: moves the decision threshold, t, so that 
the rare class tuples are easier to classify, and hence, less 
chance of costly false negative errors

 Ensemble techniques: Ensemble multiple classifiers 
introduced above

 Still difficult for class imbalance problem on multiclass tasks

68



69

Chapter 8. Classification: Basic Concepts

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Rule-Based Classification

 Model Evaluation and Selection

 Techniques to Improve Classification Accuracy: 

Ensemble Methods

 Summary



Summary (I)

 Classification is a form of data analysis that extracts models

describing important data classes. 

 Effective and scalable methods have been developed for decision 

tree induction, Naive Bayesian classification, rule-based 

classification, and many other classification methods.

 Evaluation metrics include: accuracy, sensitivity, specificity, 

precision, recall, F measure, and Fß measure.

 Stratified k-fold cross-validation is recommended for accuracy 

estimation.  Bagging and boosting can be used to increase overall 

accuracy by learning and combining a series of individual models.
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Summary (II)

 Significance tests and ROC curves are useful for model selection.

 There have been numerous comparisons of the different 

classification methods; the matter remains a research topic

 No single method has been found to be superior over all others 

for all data sets

 Issues such as accuracy, training time, robustness, scalability, 

and interpretability must be considered and can involve trade-

offs, further complicating the quest for an overall superior 

method
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CS412 Midterm Exam Statistics

 Opinion Question Answering:

 Like the style: 70.83%, dislike: 29.16%

 Exam is hard: 55.75%, easy: 0.6%, just right: 43.63%

 Time: plenty:3.03%, enough: 36.96%, not: 60%

 Score distribution: # of students (Total: 180)

 >=90: 24  

 80-89: 54  

 70-79: 46

 Final grading are based on overall score accumulation 
and relative class distributions
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 60-69: 37 

 50-59: 15

 40-49: 2

 <40: 2
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Issues: Evaluating Classification Methods

 Accuracy

 classifier accuracy: predicting class label

 predictor accuracy: guessing value of predicted attributes

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases 

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision tree 
size or compactness of classification rules
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Predictor Error Measures

 Measure predictor accuracy: measure how far off the predicted value is from 

the actual known value

 Loss function: measures the error betw. yi and the predicted value yi’

 Absolute error: | yi – yi’| 

 Squared error:  (yi – yi’)
2

 Test error (generalization error): the average loss over the test set

 Mean absolute error:                  Mean squared error:

 Relative absolute error:               Relative squared error:

The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root relative 

squared error
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Scalable Decision Tree Induction Methods

 SLIQ (EDBT’96 — Mehta et al.)

 Builds an index for each attribute and only class list and the 
current attribute list reside in memory

 SPRINT (VLDB’96 — J. Shafer et al.)

 Constructs an attribute list data structure 

 PUBLIC (VLDB’98 — Rastogi & Shim)

 Integrates tree splitting and tree pruning: stop growing the 
tree earlier

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)

 Uses bootstrapping to create several small samples
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Data Cube-Based Decision-Tree Induction

 Integration of generalization with decision-tree induction 

(Kamber et al.’97)

 Classification at primitive concept levels

 E.g., precise temperature, humidity, outlook, etc.

 Low-level concepts, scattered classes, bushy classification-

trees

 Semantic interpretation problems

 Cube-based multi-level classification

 Relevance analysis at multi-levels

 Information-gain analysis with dimension + level


