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Supervised vs. Unsupervised Learning

m Supervised learning (classification)

= Supervision: The training data (observations,

measurements, etc.) are accompanied by labels indicating

the class of the observations
= New data is classified based on the training set
m Unsupervised learning (clustering)
= The class labels of training data is unknown

= Given a set of measurements, observations, etc. with the

aim of establishing the existence of classes or clusters in
the data



Prediction Problems: Classification vs.
Numeric Prediction

m Classification
= predicts categorical class labels (discrete or nominal)

= classifies data (constructs a model) based on the training
set and the values (class labels) in a classifying attribute
and uses it in classifying new data

m Numeric Prediction

= models continuous-valued functions, i.e., predicts
unknown or missing values

m Typical applications
= Credit/loan approval:
s Medical diagnosis: if a tumor is cancerous or benign
s Fraud detection: if a transaction is fraudulent
s Web page categorization: which category it is



Classification—A Two-Step Process

m  Model construction: describing a set of predetermined classes

= Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute

= The set of tuples used for model construction is training set

= The model is represented as classification rules, decision trees, or
mathematical formulae

m  Model usage: for classifying future or unknown objects
= Estimate accuracy of the model

= The known label of test sample is compared with the classified
result from the model

= Accuracy rate is the percentage of test set samples that are
correctly classified by the model

= Test set is independent of training set (otherwise overfitting)
= If the accuracy is acceptable, use the model to classify new data
s Note: If the test set is used to select models, it is called validation (test) set
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Decision Tree Induction: An Example

income |student|credit_rating| buys computer

Q Training data set: Buys_computer

Q The data set follows an example of
Quinlan’s ID3 (Playing Tennis)

Q Resulting tree:

credit rating?
/N
no yes excellent fair

/
no

10



Algorithm for Decision Tree Induction

= Basic algorithm (a greedy algorithm)
= Tree is constructed in a top-down recursive divide-and-
conquer manner
= At start, all the training examples are at the root
= Attributes are categorical (if continuous-valued, they are
discretized in advance)
= Examples are partitioned recursively based on selected
attributes
= Test attributes are selected on the basis of a heuristic or
statistical measure (e.g., information gain)
= Conditions for stopping partitioning
= All samples for a given node belong to the same class
= There are no remaining attributes for further partitioning —
majority voting is employed for classifying the leaf
= There are no samples left
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Brief Review of Entropy

= Entropy (Information Theory)

= A measure of uncertainty associated with a random

variable

= Calculation: For a discrete random variable Y taking

m distinct values {y4, ..., Y },

« H(Y) = = X% pilog(p;) , where p; = P(Y = y;)

= Interpretation:
= Higher entropy => higher uncertainty

= Lower entropy => lower uncertainty

s Conditional Entropy
= H(Y[X) = Ly p()H(Y|X = x)

H(X)

&
L =

0 0.5 1.0
PriX =1)

m=2
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Attribute Selection Measure:
Information Gain (ID3/C4.5)

Select the attribute with the highest information gain

Let p; be the probability that an arbitrary tuple in D belongs to
class C;, estimated by |C; ;|/[D|

Expected information (entropy) needed to classify a tuple in D:

InfO(D) — _Z Pi Iog 2(pi)
Information needed (after using A to split D'into v partitions) to

classify D: v I D.
Info, (D) =Z| |
iz | D]
Information gained by branching on attribute A

Gain(A) = Info(D) — Info (D)

x Info(D;)
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Attribute Selection: Information Gain

B Class P: buys_computer = “yes” Info___ (D) :£|(2’3)+i|(4,0)
M Class N: buys_computer = “no” " 14 14
Info(D) = 1(9,5) = —%Iogz(%)—%bgz(%) ~0.940 + % 1(3,2) = 0.694

age i | Ny | (P, N
J i (P, 1) 2 | (2,3)Mmeans “age <=30" has 5 out of

14 samples, with 2 yes’es and 3

no’s. Hence

income |student| credit rating | buys computer

Gain(age) = Info(D) — Info, . (D) = 0.246

age

Similarly,

Gain(income) = 0.029
Gain(student) =0.151
Gain(credit _rating) =0.048

14



Computing Information-Gain for
Continuous-Valued Attributes

m Let attribute A be a continuous-valued attribute
s Must determine the best split point for A
= Sort the value A in increasing order

= Typically, the midpoint between each pair of adjacent values
is considered as a possible split point

= (ai+a,,;)/2 is the midpoint between the values of a, and a,,

= The point with the minimum expected information
requirement for A is selected as the split-point for A

= Split:

= D1 is the set of tuples in D satisfying A < split-point, and D2 is
the set of tuples in D satisfying A > split-point

15



Gain Ratio for Attribute Selection (C4.5)

s Information gain measure is biased towards attributes with a
large number of values

m C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)

Splitinfo, (D) =— 1 D; l log, D]
o IDI |D|
= GainRatio(A) = Gain(A)/Splitinfo(A)
EX. ;
. Splitnfo,, .,..(D) = —142 x log2(lt) 1621 log2( 1(:1) = % X log2( 1‘1) — 1.557

= gain_ratio(income) =0.029/1.557 = 0.019

m The attribute with the maximum gain ratio is selected as the
splitting attribute

16



Gini Index (CART, IBM IntelligentMiner)

If a data set D contains examples from n classes, gini index,
gini(D) is defined as o n 5
gini(D)=1— > p9
=1
where p; is the relative frequency of class jin D

If a data set D is split on A into two subsets D, and D,, the gini
index gini(D) is defined as D, D,
gini ,(D)=""tgini(p)+" —2 gini(D,)

- | DI D]
Reduction in Impurity:
Agini(A)=gini(D)—gini, (D)

The attribute provides the smallest ginig,;,(D) (or the largest
reduction in impurity) is chosen to split the node (need to
enumerate all the possible splitting points for each attribute)

17



Computation of Gini Index

Ex. D has 9 tuplesin buys computer = ”Zyes” a?d 5in “no”

gini(D) :1-(% - % = 0.459
Suppose the attribute income partitions D into 10 in D;: {low,

medium}and 4 in D, giniincomee{low,medium}(D):(%)Gini(D1)+(i Gini(D,)

14
10 TX* £.8% 4 2 *
R0 -@) )% 0-@ -@)
= (.443
= Ginijpcome ¢ {hzgh}(D)

GiNigoy highy 1S 0-458; GiNig o gium highy 1S 0-450. Thus, split on the
{low,medium} (and {high}) since it has the lowest Gini index

All attributes are assumed continuous-valued

May need other tools, e.g., clustering, to get the possible split
values

Can be modified for categorical attributes "



Comparing Attribute $election Measures

s The three measures, in general, return good results but
= Information gain:
= biased towards multivalued attributes
= Gain ratio:

= tends to prefer unbalanced splits in which one partition is
much smaller than the others

= Gini index:
= biased to multivalued attributes
= has difficulty when # of classes is large

= tends to favor tests that result in equal-sized partitions
and purity in both partitions
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Other Attribute Selection Measures

CHAID: a popular decision tree algorithm, measure based on x? test for

independence
C-SEP: performs better than info. gain and gini index in certain cases

G-statistic: has a close approximation to x? distribution

MDL (Minimal Description Length) principle (i.e., the simplest solution is

preferred):

= The best tree as the one that requires the fewest # of bits to both (1)

encode the tree, and (2) encode the exceptions to the tree
Multivariate splits (partition based on multiple variable combinations)
= CART: finds multivariate splits based on a linear comb. of attrs.
Which attribute selection measure is the best?

= Most give good results, none is significantly superior than others
20



Overfitting and Tree Pruning

s Overfitting: An induced tree may overfit the training data

= Too many branches, some may reflect anomalies due to
noise or outliers

= Poor accuracy for unseen samples
s Two approaches to avoid overfitting

= Prepruning: Halt tree construction early-do not split a node
if this would result in the goodness measure falling below a

threshold
= Difficult to choose an appropriate threshold

= Postpruning: Remove branches from a “fully grown” tree—
get a sequence of progressively pruned trees

= Use a set of data different from the training data to
decide which is the “best pruned tree”

21



Enhancements to Basic Decision Tree Induction

= Allow for continuous-valued attributes

= Dynamically define new discrete-valued attributes that
partition the continuous attribute value into a discrete set of
intervals

= Handle missing attribute values
= Assign the most common value of the attribute
= Assign probability to each of the possible values
= Attribute construction

= Create new attributes based on existing ones that are
sparsely represented

= This reduces fragmentation, repetition, and replication

22



Classification in Large Databases

Classification—a classical problem extensively studied by
statisticians and machine learning researchers

Scalability: Classifying data sets with millions of examples and
hundreds of attributes with reasonable speed

Why is decision tree induction popular?

= relatively faster learning speed (than other classification
methods)

= convertible to simple and easy to understand classification
rules

= can use SQL queries for accessing databases

= comparable classification accuracy with other methods
RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

= Builds an AVC-list (attribute, value, class label)

23



Scalability Framework for RainForest

Separates the scalablility aspects from the criteria that
determine the quality of the tree

Builds an AVC-list: AVC (Attribute, Value, Class_label)
AVC-set (of an attribute X))

= Projection of training dataset onto the attribute X and
class label where counts of individual class label are
aggregated

AVC-group (ofanoden)

= Set of AVC-sets of all predictor attributes at the node n

24



Rainforest: Training Set and Its AVC Sets

Training Examples AVC-set on Age  AVC-set on income
age | income |studentjredit_rating com| [ age | Buy computer income | Buy_Computer
yes no
yes no
<=30 5 3 high 2 2
31..40 4 0 medium 4 2
>40 3 2 low 3 1
AVC-set on
AVC-set on Student : )
credit_rating
student Buy_Computer Buy Computer
Credit m
yes no rating yes no
yes 6 1 fair 6 2
no 3 4 excellent 3 3

25



BOAT (Bootstrapped Optimistic
Algorithm for Tree Construction)

Use a statistical technique called bootstrapping to create
several smaller samples (subsets), each fits in memory

Each subset is used to create a tree, resulting in several
trees

These trees are examined and used to construct a new
tree T’

= It turns out that T’ is very close to the tree that would
be generated using the whole data set together

Adv: requires only two scans of DB, an incremental alg.

26



Presentation of Classification Results

,-’-} dbminer =] E
File Edit Query “iew “Window Option: Help _||51|5|
|| =) EAEE =] = e ]
Drirn; Iu:u:ust | Lever ILE\"E":' [~ ﬁ!lﬂ EE|| T-'l I:l'i'mﬂélaﬁ . “j | _
o r
T}

1 )_Q reverue(.00~2000.00)

)_Q cost(0.00~ 1000 00)
_Q region; Europe)
__’ reginn{Far East)
_Q region{Morth & merica)
_. cost( 1000 00~2000.00)

revremel 2000 .00-4000.007%

rerremel 4000 .00~-6000.007%

resrernel 000 00+

revernue ot Specified)

o230

Classification attribute: product

b@utdnnr Froducts

5| e 2




Visualization of a Decision Tree in $GI/MineSet 3.0
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Interactive Visual Mining by Perception-
Based Classification (PBC)
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Bayesian Classification: Why?

A statistical classifier: performs probabilistic prediction, i.e.,
predicts class membership probabilities

Foundation: Based on Bayes’ Theorem.

Performance: A simple Bayesian classifier, naive Bayesian
classifier, has comparable performance with decision tree and
selected neural network classifiers

Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct —
prior knowledge can be combined with observed data

Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured

31



Bayes’' Theorem: Basics

= Total probability Theorem: P(B)=
|

YR

PEIAPK)

= Bayes’ Theorem: p(|X)= P(XLl_(l;(l;)(H) =P(X|H)xP(H)/P(X)

= Let X be a data sample (“evidence”): class label is unknown
= Let H be a hypothesis that X belongs to class C

= Classification is to determine P(H|X), (i.e., posteriori probability): the
probability that the hypothesis holds given the observed data sample X

= P(H) (prior probability): the initial probability
= E.g., X will buy computer, regardless of age, income, ...
= P(X): probability that sample data is observed

= P(X|H) (likelihood): the probability of observing the sample X, given that
the hypothesis holds

= E.g., Given that X will buy computer, the prob. that X is 31..40,
medium income

32



Prediction Based on Bayes’' Theorem

Given training data X, posteriori probability of a hypothesis H,
P(H|X), follows the Bayes’ theorem

P( :|X)=P(X|P"('>)<§’("')=P(X| )xP(H)/P(X)

Informally, this can be viewed as
posteriori = likelihood x prior/evidence

Predicts X belongs to C. iff the probability P(C.| X) is the highest
among all the P(C, | X) for all the k classes

Practical difficulty: It requires initial knowledge of many
probabilities, involving significant computational cost

33



Classification Is to Derive the Maximum Posteriori

m Let D be a training set of tuples and their associated class
labels, and each tuple is represented by an n-D attribute vector
X = (Xq, Xy, woey Xp,)

= Suppose there are mclasses C;, C,, ..., C....

m Classification is to derive the maximum posteriori, i.e., the
maximal P(C, | X)

= This can be derived from Bayes’ theorem

P(X|C.)P(C:)

= Since P(X) is constant for all classes, only
P(C;|X)=P(X|C,)P(C;)
needs to be maximized

34



Naive Bayes Classifier

A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between

attributes): N
" p(xic= T Pl ICi)=P(x, ICDXPGx|C)x.-xP(x._|Ci)
k=1
This greatly reduces the computation cost: Only counts the
class distribution

If A, is categorical, P(x,|C) is the # of tuples in C, having value x,
for A, divided by |C, ;| (# of tuples of C; in D)

If A, is continous-valued, P(x, |C)) is usually computed based on
Gaussian distribution with a mean u and standard deviation o

1 _(Xz_:z)z
and P(Xklci) iS g(XuLl’G) T /27Z'Ge

PX|Ci) = 0% 110, )

35



Naive Bayes Classifier: Training Dataset

age | income studentredit_rating com

Class:
Cl:buys_computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

36



Naive Bayes Classifier: An Example

age income studentredit_ratind com

.

= P(C): P(buys_computer = “yes”) =9/14 = 0.643 T R —
P(buys _computer = “no”) = 5/14= 0.357 3?:040 Eﬁ,ium 5 ;3;::22: y

= Compute P(X|C) for each class B TR N m—
P(age = “<=30" | buys_computer = “yes”) =2/9=0.222 [ o e e

P(age = “<= 30" | buys_computer = “no”)=3/5=0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”)=2/5=0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) =1/5=0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) =2/5=0.4
= X=(age <=30, income = medium, student = yes, credit_rating = fair)
P(X|C) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “n0”)=0.6 x0.4 x 0.2 x 0.4 = 0.019
P(X|C.)*P(C.) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore, X belongs to class (“buys_computer = yes”) 37



Avoiding the Zero-Probability Problem

= Naive Bayesian prediction requires each conditional prob. be
non-zero. Otherwise, the predicted prob. will be zero

P(XICD = TIP(kICP)
k=1
= Ex. Suppose a dataset with 1000 tuples, income=Ilow (0),
income= medium (990), and income = high (10)
= Use Laplacian correction (or Laplacian estimator)
= Adding 1 to each case
Prob(income = low) = 1/1003
Prob(income = medium) = 991/1003
Prob(income = high) = 11/1003

= The “corrected” prob. estimates are close to their
“uncorrected” counterparts
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Naive Bayes Classifier: Comments

= Advantages

= Easy to implement

= Good results obtained in most of the cases
s Disadvantages

= Assumption: class conditional independence, therefore loss
of accuracy

= Practically, dependencies exist among variables
= E.g., hospitals: patients: Profile: age, family history, etc.

Symptoms: fever, cough etc., Disease: lung cancer,
diabetes, etc.

= Dependencies among these cannot be modeled by Naive
Bayes Classifier

= How to deal with these dependencies? Bayesian Belief Networks
(Chapter 9)
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Using IF-THEN Rules for Classification

Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys _computer = yes

= Rule antecedent/precondition vs. rule consequent
Assessment of a rule: coverage and accuracy

= N_,.rs= # Of tuples covered by R
= N, et = # Of tuples correctly classified by R
coverage(R) = n_,,./|D| /* D:training data set */
accuracy(R) =N, rect/ Neovers

If more than one rule are triggered, need conflict resolution

= Size ordering: assign the highest priority to the triggering rules that has
the “toughest” requirement (i.e., with the most attribute tests)

= Class-based ordering: decreasing order of prevalence or misclassification
cost per class

= Rule-based ordering (decision list): rules are organized into one long
priority list, according to some measure of rule quality or by experts

41



Rule Extraction from a Decision Tree

Rules are easier to understand than large

trees age?
. / '
One rule is created for each path from the — ___ 31_140 AN »
root to a leaf v | —
student? - credit rating?
Each attribute-value pair along a path formsa \ 7N
. . excellent fair
conjunction: the leaf holds the class R : .
. . es
prediction no yes e !

Rules are mutually exclusive and exhaustive

Example: Rule extraction from our buys computer decision-tree

IF age = young AND student = no THEN buys _computer = no
IF age = young AND student = yes THEN buys _computer = yes
IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes
42




Rule Induction: Sequential Covering Method

Sequential covering algorithm: Extracts rules directly from training
data

Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

Rules are learned sequentially, each for a given class C. will cover
many tuples of C.but none (or few) of the tuples of other classes
Steps:

= Rules are learned one at a time

= Each time aruleis learned, the tuples covered by the rules are
removed

= Repeat the process on the remaining tuples until termination
condition, e.g., when no more training examples or when the
quality of a rule returned is below a user-specified threshold

Comp. w. decision-tree induction: learning a set of rules
simultaneously
43



Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Examples covered
by Rule 2

Examples covered
by Rule 1

s covered

44



Rule Generation

m To generate arule
while(true)
find the best predicate p
if foil-gain(p) > threshold then add p to current rule
else break

A3=1&&A1=2
— & -

Positive Negative
examples examples

45



How to Learn-One-Rule?

Start with the most general rule possible: condition = empty

Adding new attributes by adopting a greedy depth-first strategy
= Picks the one that most improves the rule quality

Rule-Quality measures: consider both coverage and accuracy

= Foil-gain (in FOIL & RIPPER): assesses info_gain by extending

FOIL _Gain = pos'x(log, —log POS

pos+neg' - pos+ neg

= favors rules that have high accuracy and cover many positive tuples
Rule pruning based on an independent set of test tuples
POS — neg
POS + neg

FOIL _Prune(R) =

Pos/neg are # of positive/negative tuples covered by R.
If FOIL_Prune is higher for the pruned version of R, prune R
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Model Evaluation and Selection

Evaluation metrics: How can we measure accuracy? Other
metrics to consider?

Use validation test set of class-labeled tuples instead of
training set when assessing accuracy

Methods for estimating a classifier’s accuracy:
= Holdout method, random subsampling
= Cross-validation
= Bootstrap
Comparing classifiers:
= Confidence intervals

= Cost-benefit analysis and ROC Curves

48



Classifier Evaluation Metrics: Confusion

Matrix
Confusion Matrix:
Actual class\Predicted class C, - C;
C, True Positives (TP) False Negatives (FN)
- C False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted | buy computer | buy computer | Total
class = yes =no

buy computer = yes 6954 46 7000

buy computer = no 412 2588 3000

Total 7366 2634 10000

s Given m classes, an entry, CM;; ina confusion matrix indicates
# of tuplesin class i that were labeled by the classifier as class j

= May have extra rows/columns to provide totals



Classifier Evaluation Metrics: Accuracy,
Error Rate, Sensitivity and Specificity

A\P

C

-C

C

TP

FN

P

-C

FP

TN

N

Pl

NI

All

= Classifier Accuracy, or

m Class Imbalance Problem:

= One class may be rare, e.g.
fraud, or HIV-positive

= Significant majority of the
negative class and minority of

recognition rate: percentage of the positive class
test set tuples that are correctly = Sensitivity: True Positive

classified

Accuracy = (TP + TN)/AII
= Errorrate: 1 —accuracy, or
Error rate = (FP + FN)/AlII

recognition rate
= Sensitivity = TP/P

= Specificity: True Negative
recognition rate

= Specificity = TN/N

50



Classifier Evaluation Metrics:
Precision and Recall, and F-measures

Precision: exactness — what % of tuples that the classifier
labeled as positive are actually positive

Tecision = =
2 - TR TD
Recall: completeness — what % of positive tuples did the
classifier label as positive? s i
, recall =
Perfect scoreis 1.0 TP+ FN

Inverse relationship between precision & recall
F measure (F, or F-score): harmonic mean of precision and
recall, 2 X precision X recall

F =
_ o precision + recall
Fg: weighted measure of precision and recall

= assigns 3 times as much weight to recall as to precision

(1 + 3%) x precision x recall
3?2 x precision + recall

Fp

51



Classifier Evaluation Metrics: Example

Actual Class\Predicted class cancer =yes | cancer=no | Total Recognition(%)
cancer =yes 90 210 300 30.00 (sensitivity
cancer = no 140 9560 9700 | 98.56 (specificity)

Total 230 9770 10000 | 96.40 (accuracy)

= Precision =90/230=39.13%

Recall =90/300 = 30.00%

52



Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

= Holdout method
= Given data is randomly partitioned into two independent sets
= Training set (e.g., 2/3) for model construction
= Test set (e.g., 1/3) for accuracy estimation
= Random sampling: a variation of holdout

= Repeat holdout k times, accuracy = avg. of the accuracies
obtained

= Cross-validation (k-fold, where k = 10 is most popular)

= Randomly partition the data into k mutually exclusive subsets,
each approximately equal size

= At -th iteration, use D, as test set and others as training set

= Leave-one-out: k folds where k = # of tuples, for small sized
data

= *Stratified cross-validation*: folds are stratified so that class
dist. in each fold is approx. the same as that in the initial data

53



Evaluating Classifier Accuracy: Bootstrap

= Bootstrap
m Works well with small data sets

= Samples the given training tuples uniformly with replacement

= i.e., each time a tuple is selected, it is equally likely to be selected
again and re-added to the training set

= Several bootstrap methods, and a common one is .632 boostrap

= A data set with d tuples is sampled d times, with replacement, resulting in
a training set of d samples. The data tuples that did not make it into the
training set end up forming the test set. About 63.2% of the original data

end up in the bootstrap, and the remaining 36.8% form the test set (since
(1-1/d)¢=el=0.368)

= Repeat the sampling procedure k times, overall accuracy of the model:

k
1 Z | e
‘_1('(,.(:\.[) — 7 (()-6:32 X ;;1(,'(,‘(.;‘[i)test_set —'I— ().:368 >< ..-_1(,‘(,—-(1.?\.[2")tvrai/n___set)

7—1
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Estimating Confidence Intervals:
Classifier Models M, vs. M,
Suppose we have 2 classifiers, M, and M,, which one is better?
10- T o
Use 10-fold cross-validation to obtain 67‘7‘(]\/[1) and &7 (M)

These mean error rates are just estimates of error on the true

population of future data cases

What if the difference between the 2 error rates is just

attributed to chance?
= Use a test of statistical significance

s Obtain confidence limits for our error estimates
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Estimating Confidence Intervals:
Null Hypothesis

Perform 10-fold cross-validation

Assume samples follow a t distribution with k—1 degrees of
freedom (here, k=10)

Use t-test (or Student’s t-test)
Null Hypothesis: M, & M, are the same
If we can reject null hypothesis, then

= we conclude that the difference between M, & M, is

statistically significant

s Chose model with lower error rate
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Estimating Confidence Intervals: t-test

= If only 1 test set available: pairwise comparison

= For ith round of 10-fold cross-validation, the same cross
partitioning is used to obtain err(M,); and err(M,).

= Average over 10 rounds to get é?’f(]\/[l) and  &FT (M)
= t-test computes t-statistic with k-1 degrees of

freedom: | _ TT(My) — FTT(Mo)
Vovar(My, — My)/k
)

1
-gza'_.r'(ﬂfl — J[g) — Z Z {Ef.-’(:‘irl); — 6".-'"?‘(;1[2)1' — (W(J[l) — W(J[g))

where

2

=

i=1
= If two test sets available: use non-paired t-test

[ AI v AI
where o — M) = \Fzr( 1) | var( 2)’

k] 1‘.‘,2
where k; & k,are # of cross-validation samples used for M, & M,, resp.



Estimating Confidence Intervals:
Table for t-distribution

= Symmetric

= Significance level,
e.g., sig =0.05 or
5% means M; & M,
are significantly
different for 95% of
population

s Confidence limit, z
= sig/2

TABLE B: -DISTRIBUTION CRITICAL VALUES

Tail probability p
daf | 25 20 A5 10 05 025 02 .01 .00s  .0025 .001 L0005
1] 1000 1376 1963 3.078 6314 1271 1589 3182 63.66 1273 3183 6366
2] 816 1061 1386 1.886 2920 4303 4849 6965 9925 14.09 2233 3160
3| 765 978 1250 1.638 2353 3182 3482 4541 5841 7453 1021 1292
4| 741 541 1,190 1.533 2132 2776 2999 3747 4604 ¢+ 5598 7173 8610
5| 727 920 1156 1476° 2.015 2571 2757 3365 4032 4773 5893 6.869
6| 718 906 1134 1440 1.943 2447 2612 3143 3707 4317, 5208 5959
71 711 896 1119 1415 1895 2365 2517 2998 3499 4029 4785 5.408
| 706 .89 1108 1397 1.860 2306 2449 2896 3355 3.833 4501 S5.041
9| .703 883 1100 1383 1,833 2262 2398 2821 3250 3690 4297 4781
10 | 700 879 1093 1372 1.812 23228 2359 2764 3.169 3581 4.144 4537
11 | 697 876 1088 1363 1796 2201 2328 2718 3106 3497 4.025 4437
12 | 695 873 1083 1356 1782 2179 2303 2.681 3.055 3428 3930 4318
13 | 694 870 1079 1350 1771 2160 2282 ; 2.650 3.012° 3372 3.852 4.221
14 | 692 868 1076 1.345 1761 2.145 2264 2.624 2977 3326 3787 -4.140
15 | 691 866 1074 1341 1753 2131 2249 2.602° 2947 3286 3733 4073
16 | 690 865 1071 1337 1746 2120 2235 2583 2921 3252- 3686 4.015
17 | 689 863 1.069 1333 1740 2,110 2224 2567 2893 3222 3.646 3965
18 | .688 862 1.067 1330 1734 2101 2214 2552 2878 3197 3611 3922
19 | .688 861 1066 1328 1729 2,093 2205 2539 2861 3174 3.579 3.883
20 | .687 B60 1064 1325 1725 2086 2197 2528 2845 3153 3552 3.850
21 | .686 859 1063 1323 1721 2080 2189 2518 2831, 3.135 3527 32319
22 | 686 858 1061 1321 1717 2074 2183 2508 2819 3119 3505 3.792
23 | 685 858 1060 1319 1714 2069 2177 2500 2807 32104 3485 3.768
24 | 685 857 1059 1318 LTIl 2064 2172 2492 2797 3.0901 3.467. 3.745
25 | 684 856 1058 1316 L1708 2060 2167 2485 2787 3.078 3450 3.725
26 | 684 856 1058 1315 L706 2056 2162 2479 2779 3067 3435 3707
27| 6384 855 1057 13314 1703 2,052 2158 2473 2771 3.057 3421 3.69
28 | .683 855 1056 1313 1701 2.048 2154 2467 2763 3047 3408 3674
29 | 683 854 1055 1311 1.699 2.045 2150 2462 2756 3.038 3396 3.659
30| 683 854 1055 1310 1.697 2042 2147 2457 2750 3.030 3385 3646
40 | 681 851 1050 1303 1.684 2021 2123 2423 2704 2971 3307 3551
50 | .679 849 1047 1299 1676 2009 2109 2403 2678 2937 3261 3496
60 | 679 848  1.0d45 1296 1671 2000 2.099 2390 2660 2915 3232 3460
80 | .678 846 1043 1292 1664 1960 2088 2374 2639 2887 3.195 3416
100 | 677 845 1042 1200 1660 1984 2081 2364 2626 2.871 3.174 3,390
1000 | 675 842 1,037 1282 1646 1962 2056 2320 2581 2813 3.098 3300
e | 674 841 1036 1282 1645 1960 2054 2326 2576 2.807 3.091 3291
50% 60% T0% B0% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%
Confidence level C
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Estimating Confidence Intervals:
Statistical Significance

= Are M, & M, significantly different?

Compute t. Select significance level (e.g. sig = 5%)

Consult table for t-distribution: Find t value corresponding
to k-1 degrees of freedom (here, 9)

t-distribution is symmetric: typically upper % points of
distribution shown - look up value for confidence limit
z=sig/2 (here, 0.025)

Ift>zort<-z then tvalue liesin rejection region:

= Reject null hypothesis that mean error rates of M; & M,
are same

= Conclude: statistically significant difference between M,
& M,

Otherwise, conclude that any difference is chance
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Model Selection: ROC Curves | Yy

ROC (Receiver Operating

Characteristics) curves: for visual
) P e

comparison of classification models |

Originated from signal detection theory /

Shows the trade-off between the true  «“—————— —
positive rate and the false positive rate filse podtive e

The area under the ROC curve is a = Vertical axish
measure of the accuracy of the model represents the true

_ _ positive rate
Rank the test tuples in decreasing = Horizontal axis rep

e poRiive rge
LY
LY
Sy
"
b
.
\ \
"y
M
.

order: the one that is most likely to the false positive rate
belong to the positive class appearsat 11,0 plot also shows a
the top of the list diagonal line

The closer to the diagonal line (i.e., the & A model with perfect
closer the area is to 0.5), the less accuracy will have an

accurate is the model area of 1.0
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Issues Affecting Model Selection

Accuracy

= classifier accuracy: predicting class label
Speed

= time to construct the model (training time)

= time to use the model (classification/prediction time)
Robustness: handling noise and missing values
Scalability: efficiency in disk-resident databases
Interpretability

= understanding and insight provided by the model

Other measures, e.g., goodness of rules, such as decision tree
size or compactness of classification rules
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Chapter 8. Classification: Basic Concepts

Classification: Basic Concepts
Decision Tree Induction

Bayes Classification Methods
Rule-Based Classification
Model Evaluation and Selection

Techniques to Improve Classification Accuracy: @
Ensemble Methods

Summary
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Ensemble Methods: Increasing the Accuracy

. Class

= Use a combination of models to increase accuracy

= Ensemble methods

= Combine a series of k learned models, M,, M,, ..., M,, with
the aim of creating an improved model M*

s Popular ensemble methods

= Bagging: averaging the prediction over a collection of
classifiers

= Boosting: weighted vote with a collection of classifiers
= Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

Analogy: Diagnosis based on multiple doctors’ majority vote
Training

= Given a set D of d tuples, at each iteration j, a training set D, of d tuples
is sampled with replacement from D (i.e., bootstrap)

= A classifier model M is learned for each training set D,
Classification: classify an unknown sample X
= Each classifier M, returns its class prediction

= The bagged classifier M* counts the votes and assigns the class with the
most votes to X

Prediction: can be applied to the prediction of continuous values by taking
the average value of each prediction for a given test tuple

Accuracy
= Often significantly better than a single classifier derived from D
= For noise data: not considerably worse, more robust
= Proved improved accuracy in prediction
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Boosting

Analogy: Consult several doctors, based on a combination of
weighted diagnoses—weight assigned based on the previous
diagnosis accuracy

How boosting works?
= Weights are assigned to each training tuple
= Aseries of k classifiers is iteratively learned

= After a classifier M, is learned, the weights are updated to
allow the subsequent classifier, M, ,, to pay more attention to
the training tuples that were misclassified by M.

= The final M* combines the votes of each individual classifier,
where the weight of each classifier's vote is a function of its
accuracy

Boosting algorithm can be extended for numeric prediction

Comparing with bagging: Boosting tends to have greater accuracy,

but it also risks overfitting the model to misclassified data N



Adaboost (Freund and $chapire, 1997)

Given a set of d class-labeled tuples, (X4, y1), -, (Xg, Yg)
Initially, all the weights of tuples are set the same (1/d)
Generate k classifiers in k rounds. At round i,

Tuples from D are sampled (with replacement) to form a training set
D, of the same size

Each tuple’s chance of being selected is based on its weight

A classification model M; is derived from D,

Its error rate is calculated using D, as a test set

If a tuple is misclassified, its weight is increased, o.w. it is decreased

Error rate: err(Xj) is the misclassification error of tuple X;. Classifier M,
error rate is the sum of the weights of the misclassified tuples:

d
error(M;) = > w; xerr(X;)
j

The weight of classifier M/'s vote is 1-error(M,)

log

error(M.)
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Random Forest (Breiman 2001)

Random Forest:

= Each classifier in the ensemble is a decision tree classifier and is
generated using a random selection of attributes at each node to
determine the split

= During classification, each tree votes and the most popular class is
returned

Two Methods to construct Random Forest:

= Forest-Rl (random input selection): Randomly select, at each node, F
attributes as candidates for the split at the node. The CART methodology
is used to grow the trees to maximum size

s Forest-RC (random linear combinations): Creates new attributes (or
features) that are a linear combination of the existing attributes
(reduces the correlation between individual classifiers)

Comparable in accuracy to Adaboost, but more robust to errors and outliers

Insensitive to the number of attributes selected for consideration at each
split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data Sets

m Class-imbalance problem: Rare positive example but numerous
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

= Traditional methods assume a balanced distribution of classes
and equal error costs: not suitable for class-imbalanced data

= Typical methods for imbalance data in 2-class classification:
= Oversampling: re-sampling of data from positive class

= Under-sampling: randomly eliminate tuples from negative
class

= Threshold-moving: moves the decision threshold, t, so that
the rare class tuples are easier to classify, and hence, less
chance of costly false negative errors

= Ensemble techniques: Ensemble multiple classifiers
introduced above

m Still difficult for class imbalance problem on multiclass tasks
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Summary (1)

Classification is a form of data analysis that extracts models
describing important data classes.

Effective and scalable methods have been developed for decision
tree induction, Naive Bayesian classification, rule-based
classification, and many other classification methods.

Evaluation metrics include: accuracy, sensitivity, specificity,
precision, recall, F measure, and F, measure.

Stratified k-fold cross-validation is recommended for accuracy
estimation. Bagging and boosting can be used to increase overall
accuracy by learning and combining a series of individual models.
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Summary ()

Significance tests and ROC curves are useful for model selection.

There have been numerous comparisons of the different

classification methods; the matter remains a research topic

No single method has been found to be superior over all others

for all data sets

Issues such as accuracy, training time, robustness, scalability,
and interpretability must be considered and can involve trade-
offs, further complicating the quest for an overall superior

method
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C$412 Midterm Exam Statistics

s Opinion Question Answering:
= Like the style: 70.83%, dislike: 29.16%
= Exam is hard: 55.75%, easy: 0.6%, just right: 43.63%
= Time: plenty:3.03%, enough: 36.96%, not: 60%

= Score distribution: # of students (Total: 180)

= >=90: 24 = 60-69: 37 = <40:2
= 80-89: 54 = 50-59: 15
= 70-79: 46 = 40-49: 2

= Final grading are based on overall score accumulation
and relative class distributions
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Issues: Evaluating Classification Methods

Accuracy

= classifier accuracy: predicting class label

= predictor accuracy: guessing value of predicted attributes
Speed

= time to construct the model (training time)

= time to use the model (classification/prediction time)
Robustness: handling noise and missing values
Scalability: efficiency in disk-resident databases
Interpretability

= understanding and insight provided by the model

Other measures, e.g., goodness of rules, such as decision tree
size or compactness of classification rules
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Predictor Error Measures

Measure predictor accuracy: measure how far off the predicted value is from
the actual known value

Loss function: measures the error betw. y; and the predicted value y;’
= Absolute error: | y,—vy/|
= Squared error: (y,—vy/)?

Test error (generalization errdor): the average loss over the test sedt

= Mean absolute error: 2| ¥i—Wiean squared error: 2=y
- d - qad
= Relative absolute error: i;' Yi R¥lative squared error: ;(yi %)’
219 (v, -9

i=1
The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root relative
squared error
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Scalable Decision Tree Induction Methods

s SLIQ (EDBT'96 — Mehta et al.)

= Builds an index for each attribute and only class list and the
current attribute list reside in memory

s SPRINT (VLDB’96 — J. Shafer et al.)
s Constructs an attribute list data structure
= PUBLIC (VLDB’98 — Rastogi & Shim)

= Integrates tree splitting and tree pruning: stop growing the
tree earlier

= RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
= Builds an AVC-list (attribute, value, class label)

s BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)
= Uses bootstrapping to create several small samples
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Data Cube-Based Decision-Tree Induction

m Integration of generalization with decision-tree induction
(Kamber et al.’97)

m Classification at primitive concept levels
= E.g., precise temperature, humidity, outlook, etc.

= Low-level concepts, scattered classes, bushy classification-

trees
= Semantic interpretation problems
m Cube-based multi-level classification
= Relevance analysis at multi-levels

= Information-gain analysis with dimension + level
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