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Supervised vs. Unsupervised Learning

 Supervised learning (classification)

 Supervision: The training data (observations, 

measurements, etc.) are accompanied by labels indicating 

the class of the observations

 New data is classified based on the training set

 Unsupervised learning (clustering)

 The class labels of training data is unknown

 Given a set of measurements, observations, etc. with the 

aim of establishing the existence of classes or clusters in 

the data
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 Classification

 predicts categorical class labels (discrete or nominal)

 classifies data (constructs a model) based on the training 
set and the values (class labels) in a classifying attribute 
and uses it in classifying new data

 Numeric Prediction  

 models continuous-valued functions, i.e., predicts 
unknown or missing values 

 Typical applications

 Credit/loan approval:

 Medical diagnosis: if a tumor is cancerous or benign

 Fraud detection: if a transaction is fraudulent

 Web page categorization: which category it is

Prediction Problems: Classification vs. 
Numeric Prediction
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Classification—A Two-Step Process

 Model construction: describing a set of predetermined classes

 Each tuple/sample is assumed to belong to a predefined class, as 
determined by the class label attribute

 The set of tuples used for model construction is training set

 The model is represented as classification rules, decision trees, or 
mathematical formulae

 Model usage: for classifying future or unknown objects

 Estimate accuracy of the model

 The known label of test sample is compared with the classified 
result from the model

 Accuracy rate is the percentage of test set samples that are 
correctly classified by the model

 Test set is independent of training set (otherwise overfitting) 

 If the accuracy is acceptable, use the model to classify new data

 Note: If the test set is used to select models, it is called validation (test) set
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Process (1): Model Construction

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)
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Process (2): Using the Model in Prediction 

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?



9

Chapter 8. Classification: Basic Concepts

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Rule-Based Classification

 Model Evaluation and Selection

 Techniques to Improve Classification Accuracy: 

Ensemble Methods

 Summary



10

Decision Tree Induction: An Example

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

 Training data set: Buys_computer
 The data set follows an example of 

Quinlan’s ID3 (Playing Tennis)
 Resulting tree:
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Algorithm for Decision Tree Induction

 Basic algorithm (a greedy algorithm)
 Tree is constructed in a top-down recursive divide-and-

conquer manner
 At start, all the training examples are at the root
 Attributes are categorical (if continuous-valued, they are 

discretized in advance)
 Examples are partitioned recursively based on selected 

attributes
 Test attributes are selected on the basis of a heuristic or 

statistical measure (e.g., information gain)
 Conditions for stopping partitioning

 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf
 There are no samples left



Brief Review of Entropy
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m = 2
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain

 Let pi be the probability that an arbitrary tuple in D belongs to 

class Ci, estimated by |Ci, D|/|D|

 Expected information (entropy) needed to classify a tuple in D:

 Information needed (after using A to split D into v partitions) to 

classify D:

 Information gained by branching on attribute A
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Attribute Selection: Information Gain

 Class P: buys_computer = “yes”

 Class N: buys_computer = “no”

means “age <=30” has 5 out of 

14 samples, with 2 yes’es  and 3 

no’s.   Hence

Similarly,

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971
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<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Computing Information-Gain for 
Continuous-Valued Attributes

 Let attribute A be a continuous-valued attribute

 Must determine the best split point for A

 Sort the value A in increasing order

 Typically, the midpoint between each pair of adjacent values 

is considered as a possible split point

 (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

 The point with the minimum expected information 

requirement for A is selected as the split-point for A

 Split:

 D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is 

the set of tuples in D satisfying A > split-point
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Gain Ratio for Attribute Selection (C4.5)

 Information gain measure is biased towards attributes with a 
large number of values

 C4.5 (a successor of ID3) uses gain ratio to overcome the 
problem (normalization to information gain)

 GainRatio(A) = Gain(A)/SplitInfo(A)

 Ex.

 gain_ratio(income) = 0.029/1.557 = 0.019

 The attribute with the maximum gain ratio is selected as the 
splitting attribute
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Gini Index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, 
gini(D) is defined as

where pj is the relative frequency of class j in D

 If a data set D is split on A into two subsets D1 and D2, the gini
index gini(D) is defined as

 Reduction in Impurity:

 The attribute provides the smallest ginisplit(D) (or the largest 
reduction in impurity) is chosen to split the node (need to 
enumerate all the possible splitting points for each attribute)
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Computation of Gini Index 

 Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

 Suppose the attribute income partitions D into 10 in D1: {low, 
medium} and 4 in D2

Gini{low,high} is 0.458; Gini{medium,high} is 0.450.  Thus, split on the 
{low,medium} (and {high}) since it has the lowest Gini index

 All attributes are assumed continuous-valued

 May need other tools, e.g., clustering, to get the possible split 
values

 Can be modified for categorical attributes
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Comparing Attribute Selection Measures

 The three measures, in general, return good results but

 Information gain: 

 biased towards multivalued attributes

 Gain ratio: 

 tends to prefer unbalanced splits in which one partition is 

much smaller than the others

 Gini index: 

 biased to multivalued attributes

 has difficulty when # of classes is large

 tends to favor tests that result in equal-sized partitions 

and purity in both partitions
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Other Attribute Selection Measures

 CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence

 C-SEP: performs better than info. gain and gini index in certain cases

 G-statistic: has a close approximation to χ2 distribution 

 MDL (Minimal Description Length) principle (i.e., the simplest solution is 

preferred): 

 The best tree as the one that requires the fewest # of bits to both (1) 

encode the tree, and (2) encode the exceptions to the tree

 Multivariate splits (partition based on multiple variable combinations)

 CART: finds multivariate splits based on a linear comb. of attrs.

 Which attribute selection measure is the best?

 Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

 Overfitting:  An induced tree may overfit the training data 

 Too many branches, some may reflect anomalies due to 
noise or outliers

 Poor accuracy for unseen samples

 Two approaches to avoid overfitting 

 Prepruning: Halt tree construction early ̵ do not split a node 
if this would result in the goodness measure falling below a 
threshold

 Difficult to choose an appropriate threshold

 Postpruning: Remove branches from a “fully grown” tree—
get a sequence of progressively pruned trees

 Use a set of data different from the training data to 
decide which is the “best pruned tree”
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Enhancements to Basic Decision Tree Induction

 Allow for continuous-valued attributes

 Dynamically define new discrete-valued attributes that 

partition the continuous attribute value into a discrete set of 

intervals

 Handle missing attribute values

 Assign the most common value of the attribute

 Assign probability to each of the possible values

 Attribute construction

 Create new attributes based on existing ones that are 

sparsely represented

 This reduces fragmentation, repetition, and replication
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Classification in Large Databases

 Classification—a classical problem extensively studied by 

statisticians and machine learning researchers

 Scalability: Classifying data sets with millions of examples and 

hundreds of attributes with reasonable speed

 Why is decision tree induction popular?

 relatively faster learning speed (than other classification 
methods)

 convertible to simple and easy to understand classification 
rules

 can use SQL queries for accessing databases
 comparable classification accuracy with other methods

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
 Builds an AVC-list (attribute, value, class label)
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Scalability Framework for RainForest

 Separates the scalability aspects from the criteria that 

determine the quality of the tree 

 Builds an AVC-list: AVC (Attribute, Value, Class_label) 

 AVC-set  (of an attribute X )

 Projection of training dataset onto the attribute X and 

class label where counts of individual class label are 

aggregated

 AVC-group  (of a node n )

 Set of AVC-sets of all predictor attributes at the node n



25

Rainforest:  Training Set and Its AVC Sets 

student Buy_Computer

yes no

yes 6 1

no 3 4

Age Buy_Computer

yes no

<=30 2 3

31..40 4 0

>40 3 2

Credit

rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

AVC-set on incomeAVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on 
credit_rating
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BOAT (Bootstrapped Optimistic 
Algorithm for Tree Construction)

 Use a statistical technique called bootstrapping to create 

several smaller samples (subsets), each fits in memory

 Each subset is used to create a tree, resulting in several 

trees 

 These trees are examined and used to construct a new 

tree T’

 It turns out that T’ is very close to the tree that would 

be generated using the whole data set together

 Adv: requires only two scans of DB, an incremental alg.
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Presentation of Classification Results
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Visualization of a Decision Tree in SGI/MineSet 3.0
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Interactive Visual Mining by Perception-
Based Classification (PBC)
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Bayesian Classification: Why?

 A statistical classifier: performs probabilistic prediction, i.e.,

predicts class membership probabilities

 Foundation: Based on Bayes’ Theorem. 

 Performance: A simple Bayesian classifier, naïve Bayesian 

classifier, has comparable performance with decision tree and 

selected neural network classifiers

 Incremental: Each training example can incrementally 

increase/decrease the probability that a hypothesis is correct —

prior knowledge can be combined with observed data

 Standard: Even when Bayesian methods are computationally 

intractable, they can provide a standard of optimal decision 

making against which other methods can be measured
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Bayes’ Theorem: Basics

 Total probability Theorem:

 Bayes’ Theorem:

 Let X be a data sample (“evidence”): class label is unknown

 Let H be a hypothesis that X belongs to class C 

 Classification is to determine P(H|X), (i.e., posteriori probability): the 
probability that the hypothesis holds given the observed data sample X

 P(H) (prior probability): the initial probability

 E.g., X will buy computer, regardless of age, income, …

 P(X): probability that sample data is observed

 P(X|H) (likelihood): the probability of observing the sample X, given that 
the hypothesis holds

 E.g., Given that X will buy computer, the prob. that X is 31..40, 
medium income
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Prediction Based on Bayes’ Theorem

 Given training data X, posteriori probability of a hypothesis H, 

P(H|X), follows the Bayes’ theorem

 Informally, this can be viewed as 

posteriori = likelihood x prior/evidence

 Predicts X belongs to Ci iff the probability P(Ci|X) is the highest 

among all the P(Ck|X) for all the k classes

 Practical difficulty:  It requires initial knowledge of many 

probabilities, involving significant computational cost
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Classification Is to Derive the Maximum Posteriori

 Let D be a training set of tuples and their associated class 
labels, and each tuple is represented by an n-D attribute vector 
X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.

 Classification is to derive the maximum posteriori, i.e., the 
maximal P(Ci|X)

 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only                                        

needs to be maximized
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Naïve Bayes Classifier 

 A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between 
attributes):

 This greatly reduces the computation cost: Only counts the 
class distribution

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having value xk

for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continous-valued, P(xk|Ci) is usually computed based on 
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is 
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Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data to be classified: 

X = (age <=30, 

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Naïve Bayes Classifier: An Example

 P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

 Compute P(X|Ci) for each class

P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2

P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

 X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X belongs to class (“buys_computer = yes”)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Avoiding the Zero-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be 
non-zero.  Otherwise, the predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, income=low (0), 
income= medium (990), and income = high (10)

 Use Laplacian correction (or Laplacian estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The “corrected” prob. estimates are close to their 
“uncorrected” counterparts
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Naïve Bayes Classifier: Comments

 Advantages 

 Easy to implement 

 Good results obtained in most of the cases

 Disadvantages

 Assumption: class conditional independence, therefore loss 
of accuracy

 Practically, dependencies exist among variables 

 E.g.,  hospitals: patients: Profile: age, family history, etc. 

Symptoms: fever, cough etc., Disease: lung cancer, 
diabetes, etc. 

 Dependencies among these cannot be modeled by Naïve 
Bayes Classifier

 How to deal with these dependencies? Bayesian Belief Networks 
(Chapter 9)
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Using IF-THEN Rules for Classification

 Represent the knowledge in the form of IF-THEN rules

R:  IF age = youth AND student = yes  THEN buys_computer = yes

 Rule antecedent/precondition vs. rule consequent

 Assessment of a rule: coverage and accuracy

 ncovers = # of tuples covered by R

 ncorrect = # of tuples correctly classified by R

coverage(R) = ncovers /|D|   /* D: training data set */

accuracy(R) = ncorrect / ncovers

 If more than one rule are triggered, need conflict resolution

 Size ordering: assign the highest priority to the triggering rules that has 
the “toughest” requirement (i.e., with the most attribute tests)

 Class-based ordering: decreasing order of prevalence or misclassification 
cost per class

 Rule-based ordering (decision list): rules are organized into one long 
priority list, according to some measure of rule quality or by experts
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age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

 Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes

Rule Extraction from a Decision Tree

 Rules are easier to understand than large 
trees

 One rule is created for each path from the 
root to a leaf

 Each attribute-value pair along a path forms a 
conjunction: the leaf holds the class 
prediction 

 Rules are mutually exclusive and exhaustive
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Rule Induction: Sequential Covering Method

 Sequential covering algorithm: Extracts rules directly from training 
data

 Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

 Rules are learned sequentially, each for a given class Ci will cover 
many tuples of Ci but none (or few) of the tuples of other classes

 Steps: 

 Rules are learned one at a time

 Each time a rule is learned, the tuples covered by the rules are 
removed

 Repeat the process on the remaining tuples until termination 
condition, e.g., when no more training examples or when the 
quality of a rule returned is below a user-specified threshold

 Comp. w. decision-tree induction: learning a set of rules 
simultaneously
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Sequential Covering Algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

Examples covered

by Rule 3

Examples covered

by Rule 2Examples covered

by Rule 1

Positive 

examples
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Rule Generation

 To generate a rule

while(true)

find the best predicate p

if foil-gain(p) > threshold then add p to current rule

else break

Positive 

examples

Negative 

examples

A3=1
A3=1&&A1=2

A3=1&&A1=2

&&A8=5
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How to Learn-One-Rule?

 Start with the most general rule possible: condition = empty

 Adding new attributes by adopting a greedy depth-first strategy

 Picks the one that most improves the rule quality

 Rule-Quality measures: consider both coverage and accuracy

 Foil-gain (in FOIL & RIPPER): assesses info_gain by extending 
condition

 favors rules that have high accuracy and cover many positive tuples

 Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R

)log
''

'
(log'_ 22

negpos

pos

negpos

pos
posGainFOIL







negpos

negpos
RPruneFOIL




)(_



47

Chapter 8. Classification: Basic Concepts

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Rule-Based Classification

 Model Evaluation and Selection

 Techniques to Improve Classification Accuracy: 

Ensemble Methods

 Summary



Model Evaluation and Selection

 Evaluation metrics: How can we measure accuracy?  Other 

metrics to consider?

 Use validation test set of class-labeled tuples instead of 

training set when assessing accuracy

 Methods for estimating a classifier’s accuracy: 

 Holdout method, random subsampling

 Cross-validation

 Bootstrap

 Comparing classifiers:

 Confidence intervals

 Cost-benefit analysis and ROC Curves
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Classifier Evaluation Metrics: Confusion 
Matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

 Given m classes, an entry, CMi,j in a confusion matrix indicates 
# of tuples in class i that were labeled by the classifier as class j

 May have extra rows/columns to provide totals

Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Classifier Evaluation Metrics: Accuracy, 
Error Rate, Sensitivity and Specificity

 Classifier Accuracy, or 
recognition rate: percentage of 
test set tuples that are correctly 
classified

Accuracy = (TP + TN)/All

 Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

 Class Imbalance Problem: 

 One class may be rare, e.g. 
fraud, or HIV-positive

 Significant majority of the 
negative class and minority of 
the positive class

 Sensitivity: True Positive 
recognition rate

 Sensitivity = TP/P

 Specificity: True Negative 
recognition rate

 Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

 Precision: exactness – what % of tuples that the classifier 
labeled as positive are actually positive

 Recall: completeness – what % of positive tuples did the 
classifier label as positive?

 Perfect score is 1.0

 Inverse relationship between precision & recall
 F measure (F1 or F-score): harmonic mean of precision and 

recall,

 Fß:  weighted measure of precision and recall
 assigns ß times as much weight to recall as to precision
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Classifier Evaluation Metrics: Example

52

 Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)



Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

 Holdout method
 Given data is randomly partitioned into two independent sets

 Training set (e.g., 2/3) for model construction
 Test set (e.g., 1/3) for accuracy estimation

 Random sampling: a variation of holdout
 Repeat holdout k times, accuracy = avg. of the accuracies 

obtained
 Cross-validation (k-fold, where k = 10 is most popular)

 Randomly partition the data into k mutually exclusive subsets, 
each approximately equal size

 At i-th iteration, use Di as test set and others as training set
 Leave-one-out: k folds where k = # of tuples, for small sized 

data
 *Stratified cross-validation*: folds are stratified so that class 

dist. in each fold is approx. the same as that in the initial data
53



Evaluating Classifier Accuracy: Bootstrap

 Bootstrap

 Works well with small data sets

 Samples the given training tuples uniformly with replacement

 i.e., each time a tuple is selected, it is equally likely to be selected 

again and re-added to the training set

 Several bootstrap methods, and a common one is .632 boostrap

 A data set with d tuples is sampled d times, with replacement, resulting in 

a training set of d samples.  The data tuples that did not make it into the 

training set end up forming the test set.  About 63.2% of the original data 

end up in the bootstrap, and the remaining 36.8% form the test set (since 

(1 – 1/d)d ≈ e-1 = 0.368)

 Repeat the sampling procedure k times, overall accuracy of the model:

54



Estimating Confidence Intervals:
Classifier Models M1 vs. M2

 Suppose we have 2 classifiers, M1 and M2, which one is better?

 Use 10-fold cross-validation to obtain                     and

 These mean error rates are just estimates of error on the true 

population of future data cases

 What if the difference between the 2 error rates is just 

attributed to chance?

 Use a test of statistical significance

 Obtain confidence limits for our error estimates
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Estimating Confidence Intervals:
Null Hypothesis

 Perform 10-fold cross-validation

 Assume samples follow a t distribution with k–1 degrees of 

freedom (here, k=10)

 Use t-test (or Student’s t-test)

 Null Hypothesis: M1 & M2 are the same

 If we can reject null hypothesis, then 

 we conclude that the difference between M1 & M2 is 

statistically significant

 Chose model with lower error rate
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Estimating Confidence Intervals: t-test

 If only 1 test set available: pairwise comparison

 For ith round of 10-fold cross-validation, the same cross 
partitioning is used to obtain err(M1)i and err(M2)i

 Average over 10 rounds to get 

 t-test computes t-statistic with k-1 degrees of 
freedom:

 If two test sets available: use non-paired t-test

where

and

where

where k1 & k2 are # of cross-validation samples used for M1 & M2, resp.
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Estimating Confidence Intervals:
Table for t-distribution

 Symmetric

 Significance level, 
e.g., sig = 0.05 or
5% means M1 & M2

are significantly 
different for 95% of 
population

 Confidence limit, z 
= sig/2
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Estimating Confidence Intervals:
Statistical Significance

 Are M1 & M2 significantly different?

 Compute t. Select significance level (e.g. sig = 5%)

 Consult table for t-distribution: Find t value corresponding 
to k-1 degrees of freedom (here, 9)

 t-distribution is symmetric: typically upper % points of 
distribution shown → look up value for confidence limit
z=sig/2 (here, 0.025)

 If t > z or t < -z, then t value lies in rejection region:

 Reject null hypothesis that mean error rates of M1 & M2

are same

 Conclude: statistically significant difference between M1

& M2

 Otherwise, conclude that any difference is chance
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Model Selection: ROC Curves

 ROC (Receiver Operating 
Characteristics) curves: for visual 
comparison of classification models

 Originated from signal detection theory

 Shows the trade-off between the true 
positive rate and the false positive rate

 The area under the ROC curve is a 
measure of the accuracy of the model

 Rank the test tuples in decreasing 
order: the one that is most likely to 
belong to the positive class appears at 
the top of the list

 The closer to the diagonal line (i.e., the 
closer the area is to 0.5), the less 
accurate is the model

 Vertical axis 
represents the true 
positive rate

 Horizontal axis rep. 
the false positive rate

 The plot also shows a 
diagonal line

 A model with perfect 
accuracy will have an 
area of 1.0
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Issues Affecting Model Selection

 Accuracy

 classifier accuracy: predicting class label

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases 

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision tree 

size or compactness of classification rules
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Chapter 8. Classification: Basic Concepts

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Rule-Based Classification

 Model Evaluation and Selection

 Techniques to Improve Classification Accuracy: 

Ensemble Methods

 Summary



Ensemble Methods: Increasing the Accuracy

 Ensemble methods

 Use a combination of models to increase accuracy

 Combine a series of k learned models, M1, M2, …, Mk, with 
the aim of creating an improved model M*

 Popular ensemble methods

 Bagging: averaging the prediction over a collection of 
classifiers

 Boosting: weighted vote with a collection of classifiers

 Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

 Analogy: Diagnosis based on multiple doctors’ majority vote

 Training

 Given a set D of d tuples, at each iteration i, a training set Di of d tuples 
is sampled with replacement from D (i.e., bootstrap)

 A classifier model Mi is learned for each training set Di

 Classification: classify an unknown sample X

 Each classifier Mi returns its class prediction

 The bagged classifier M* counts the votes and assigns the class with the 
most votes to X

 Prediction: can be applied to the prediction of continuous values by taking 
the average value of each prediction for a given test tuple

 Accuracy

 Often significantly better than a single classifier derived from D

 For noise data: not considerably worse, more robust 

 Proved improved accuracy in prediction
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Boosting

 Analogy: Consult several doctors, based on a combination of 
weighted diagnoses—weight assigned based on the previous 
diagnosis accuracy

 How boosting works?

 Weights are assigned to each training tuple

 A series of k classifiers is iteratively learned

 After a classifier Mi is learned, the weights are updated to 
allow the subsequent classifier, Mi+1, to pay more attention to 
the training tuples that were misclassified by Mi

 The final M* combines the votes of each individual classifier, 
where the weight of each classifier's vote is a function of its 
accuracy

 Boosting algorithm can be extended for numeric prediction

 Comparing with bagging: Boosting tends to have greater accuracy, 
but it also risks overfitting the model to misclassified data
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Adaboost (Freund and Schapire, 1997)

 Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)

 Initially, all the weights of tuples are set the same (1/d)

 Generate k classifiers in k rounds.  At round i,

 Tuples from D are sampled (with replacement) to form a training set 
Di of the same size

 Each tuple’s chance of being selected is based on its weight

 A classification model Mi is derived from Di

 Its error rate is calculated using Di as a test set

 If a tuple is misclassified, its weight is increased, o.w. it is decreased

 Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi
error rate is the sum of the weights of the misclassified tuples: 

 The weight of classifier Mi’s vote is
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Random Forest (Breiman 2001) 

 Random Forest: 

 Each classifier in the ensemble is a decision tree classifier and is 
generated using a random selection of attributes at each node to 
determine the split

 During classification, each tree votes and the most popular class is 
returned

 Two Methods to construct Random Forest:

 Forest-RI (random input selection):  Randomly select, at each node, F 
attributes as candidates for the split at the node. The CART methodology 
is used to grow the trees to maximum size

 Forest-RC (random linear combinations): Creates new attributes (or 
features) that are a linear combination of the existing attributes 
(reduces the correlation between individual classifiers)

 Comparable in accuracy to Adaboost, but more robust to errors and outliers 

 Insensitive to the number of attributes selected for consideration at each 
split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data Sets

 Class-imbalance problem: Rare positive example but numerous 
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc. 

 Traditional methods assume a balanced distribution of classes 
and equal error costs: not suitable for class-imbalanced data

 Typical methods for imbalance data in 2-class classification: 

 Oversampling: re-sampling of data from positive class

 Under-sampling: randomly eliminate  tuples from negative 
class

 Threshold-moving: moves the decision threshold, t, so that 
the rare class tuples are easier to classify, and hence, less 
chance of costly false negative errors

 Ensemble techniques: Ensemble multiple classifiers 
introduced above

 Still difficult for class imbalance problem on multiclass tasks

68



69

Chapter 8. Classification: Basic Concepts

 Classification: Basic Concepts

 Decision Tree Induction

 Bayes Classification Methods

 Rule-Based Classification

 Model Evaluation and Selection

 Techniques to Improve Classification Accuracy: 

Ensemble Methods

 Summary



Summary (I)

 Classification is a form of data analysis that extracts models

describing important data classes. 

 Effective and scalable methods have been developed for decision 

tree induction, Naive Bayesian classification, rule-based 

classification, and many other classification methods.

 Evaluation metrics include: accuracy, sensitivity, specificity, 

precision, recall, F measure, and Fß measure.

 Stratified k-fold cross-validation is recommended for accuracy 

estimation.  Bagging and boosting can be used to increase overall 

accuracy by learning and combining a series of individual models.
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Summary (II)

 Significance tests and ROC curves are useful for model selection.

 There have been numerous comparisons of the different 

classification methods; the matter remains a research topic

 No single method has been found to be superior over all others 

for all data sets

 Issues such as accuracy, training time, robustness, scalability, 

and interpretability must be considered and can involve trade-

offs, further complicating the quest for an overall superior 

method
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CS412 Midterm Exam Statistics

 Opinion Question Answering:

 Like the style: 70.83%, dislike: 29.16%

 Exam is hard: 55.75%, easy: 0.6%, just right: 43.63%

 Time: plenty:3.03%, enough: 36.96%, not: 60%

 Score distribution: # of students (Total: 180)

 >=90: 24  

 80-89: 54  

 70-79: 46

 Final grading are based on overall score accumulation 
and relative class distributions
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 60-69: 37 

 50-59: 15

 40-49: 2

 <40: 2
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Issues: Evaluating Classification Methods

 Accuracy

 classifier accuracy: predicting class label

 predictor accuracy: guessing value of predicted attributes

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases 

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision tree 
size or compactness of classification rules
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Predictor Error Measures

 Measure predictor accuracy: measure how far off the predicted value is from 

the actual known value

 Loss function: measures the error betw. yi and the predicted value yi’

 Absolute error: | yi – yi’| 

 Squared error:  (yi – yi’)
2

 Test error (generalization error): the average loss over the test set

 Mean absolute error:                  Mean squared error:

 Relative absolute error:               Relative squared error:

The mean squared-error exaggerates the presence of outliers

Popularly use (square) root mean-square error, similarly, root relative 

squared error
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Scalable Decision Tree Induction Methods

 SLIQ (EDBT’96 — Mehta et al.)

 Builds an index for each attribute and only class list and the 
current attribute list reside in memory

 SPRINT (VLDB’96 — J. Shafer et al.)

 Constructs an attribute list data structure 

 PUBLIC (VLDB’98 — Rastogi & Shim)

 Integrates tree splitting and tree pruning: stop growing the 
tree earlier

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)

 Uses bootstrapping to create several small samples
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Data Cube-Based Decision-Tree Induction

 Integration of generalization with decision-tree induction 

(Kamber et al.’97)

 Classification at primitive concept levels

 E.g., precise temperature, humidity, outlook, etc.

 Low-level concepts, scattered classes, bushy classification-

trees

 Semantic interpretation problems

 Cube-based multi-level classification

 Relevance analysis at multi-levels

 Information-gain analysis with dimension + level


