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Bayesian Belief Networks

 Bayesian belief networks (also known as Bayesian 

networks, probabilistic networks): allow class 

conditional independencies between subsets of variables

 A (directed acyclic) graphical model of causal relationships

 Represents dependency among the variables 

 Gives a specification of joint probability distribution 

X Y

Z
P

 Nodes: random variables

 Links: dependency

 X and Y are the parents of Z, and Y is 

the parent of P

 No dependency between Z and P

 Has no loops/cycles
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Bayesian Belief Network: An Example
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Derivation of the probability of a 
particular combination of values of X, 
from CPT:
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Training Bayesian Networks: Several 
Scenarios

 Scenario 1:  Given both the network structure and all variables 
observable: compute only the CPT entries

 Scenario 2: Network structure known, some variables hidden: gradient 
descent (greedy hill-climbing) method, i.e., search for a solution along 
the steepest descent of a criterion function 

 Weights are initialized to random probability values

 At each iteration, it moves towards what appears to be the best 
solution at the moment, w.o. backtracking

 Weights are updated at each iteration & converge to local optimum

 Scenario 3: Network structure unknown, all variables observable: 
search through the model space to reconstruct network topology 

 Scenario 4: Unknown structure, all hidden variables: No good 
algorithms known for this purpose

 D. Heckerman.  A Tutorial on Learning with Bayesian Networks.  In 
Learning in Graphical Models, M. Jordan, ed.. MIT Press, 1999.

http://research.microsoft.com/en-us/um/people/heckerman/tutorial.pdf
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Classification by Backpropagation

 Backpropagation: A neural network learning algorithm 

 Started by psychologists and neurobiologists to develop 

and test computational analogues of neurons

 A neural network: A set of connected input/output units 

where each connection has a weight associated with it

 During the learning phase, the network learns by 

adjusting the weights so as to be able to predict the 

correct class label of the input tuples

 Also referred to as connectionist learning due to the 

connections between units
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Neural Network as a Classifier

 Weakness

 Long training time 

 Require a number of parameters typically best determined 

empirically, e.g., the network topology or “structure.”

 Poor interpretability: Difficult to interpret the symbolic meaning 

behind the learned weights and of “hidden units” in the network

 Strength

 High tolerance to noisy data 

 Ability to classify untrained patterns 

 Well-suited for continuous-valued inputs and outputs

 Successful on an array of real-world data, e.g., hand-written letters

 Algorithms are inherently parallel

 Techniques have recently been developed for the extraction of 

rules from trained neural networks
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A Multi-Layer Feed-Forward Neural Network 

Output layer

Input layer

Hidden layer

Output vector

Input vector: X
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How A Multi-Layer Neural Network Works

 The inputs to the network correspond to the attributes measured 

for each training tuple 

 Inputs are fed simultaneously into the units making up the input 

layer

 They are then weighted and fed simultaneously to a hidden layer

 The number of hidden layers is arbitrary, although usually only one 

 The weighted outputs of the last hidden layer are input to units 

making up the output layer, which emits the network's prediction

 The network is feed-forward: None of the weights cycles back to 

an input unit or to an output unit of a previous layer

 From a statistical point of view, networks perform nonlinear 

regression: Given enough hidden units and enough training 

samples, they can closely approximate any function
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Defining a Network Topology

 Decide the network topology: Specify # of units in the 

input layer, # of hidden layers (if > 1), # of units in each 

hidden layer, and # of units in the output layer

 Normalize the input values for each attribute measured in 

the training tuples to [0.0—1.0]

 One input unit per domain value, each initialized to 0

 Output, if for classification and more than two classes, 

one output unit per class is used

 Once a network has been trained and its accuracy is 

unacceptable, repeat the training process with a different 

network topology or a different set of initial weights



12

Backpropagation

 Iteratively process a set of training tuples & compare the network's 

prediction with the actual known target value

 For each training tuple, the weights are modified to minimize the 

mean squared error between the network's prediction and the actual 

target value 

 Modifications are made in the “backwards” direction: from the output 

layer, through each hidden layer down to the first hidden layer, hence 

“backpropagation”

 Steps

 Initialize weights to small random numbers, associated with biases 

 Propagate the inputs forward (by applying activation function) 

 Backpropagate the error (by updating weights and biases)

 Terminating condition (when error is very small, etc.)
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Neuron: A Hidden/Output Layer Unit

 An n-dimensional input vector x is mapped into variable y by means of the 
scalar product and a nonlinear function mapping

 The inputs to unit are outputs from the previous layer. They are multiplied by 
their corresponding weights to form a weighted sum, which is added to the 
bias associated with unit. Then a nonlinear activation function is applied to it.
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Efficiency and Interpretability

 Efficiency of backpropagation: Each epoch (one iteration through the 

training set) takes O(|D| * w), with |D| tuples and w weights, but # of 

epochs can be exponential to n, the number of inputs, in worst case

 For easier comprehension: Rule extraction by network pruning

 Simplify the network structure by removing weighted links that 

have the least effect on the trained network

 Then perform link, unit, or activation value clustering

 The set of input and activation values are studied to derive rules 

describing the relationship between the input and hidden unit 

layers

 Sensitivity analysis: assess the impact that a given input variable 

has on a network output.  The knowledge gained from this analysis 

can be represented in rules
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Classification: A Mathematical Mapping

 Classification: predicts categorical class labels

 E.g., Personal homepage classification

 xi = (x1, x2, x3, …), yi = +1 or –1

 x1 : # of word “homepage”

 x2 : # of word “welcome”

 Mathematically, x  X = n, y  Y = {+1, –1}, 

 We want to derive a function f: X  Y

 Linear Classification

 Binary Classification problem

 Data above the red line belongs to class ‘x’

 Data below red line belongs to class ‘o’

 Examples: SVM, Perceptron, Probabilistic Classifiers
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Discriminative Classifiers

 Advantages

 Prediction accuracy is generally high 

 As compared to Bayesian methods – in general

 Robust, works when training examples contain errors

 Fast evaluation of the learned target function

 Bayesian networks are normally slow 

 Criticism

 Long training time

 Difficult to understand the learned function (weights)

 Bayesian networks can be used easily for pattern 
discovery

 Not easy to incorporate domain knowledge

 Easy in the form of priors on the data or distributions
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SVM—Support Vector Machines

 A relatively new classification method for both linear and 

nonlinear data

 It uses a nonlinear mapping to transform the original 

training data into a higher dimension

 With the new dimension, it searches for the linear optimal 

separating hyperplane (i.e., “decision boundary”)

 With an appropriate nonlinear mapping to a sufficiently 

high dimension, data from two classes can always be 

separated by a hyperplane

 SVM finds this hyperplane using support vectors

(“essential” training tuples) and margins (defined by the 

support vectors)
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SVM—History and Applications

 Vapnik and colleagues (1992)—groundwork from Vapnik 

& Chervonenkis’ statistical learning theory in 1960s

 Features: training can be slow but accuracy is high owing 

to their ability to model complex nonlinear decision 

boundaries (margin maximization)

 Used for: classification and numeric prediction

 Applications: 

 handwritten digit recognition, object recognition, 

speaker identification, benchmarking time-series 

prediction tests 
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SVM—General Philosophy

Support Vectors

Small Margin Large Margin
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SVM—Margins and Support Vectors
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SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples 
associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to 
find the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum 
marginal hyperplane (MMH)
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SVM—Linearly Separable

 A separating hyperplane can be written as

W ● X + b = 0

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

 For 2-D it can be written as

w0 + w1 x1 + w2 x2 = 0

 The hyperplane defining the sides of the margin: 

H1: w0 + w1 x1 + w2 x2 ≥ 1    for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

 Any training tuples that fall on hyperplanes H1 or H2 (i.e., the 

sides defining the margin) are support vectors

 This becomes a constrained (convex) quadratic optimization

problem: Quadratic objective function and linear constraints 

Quadratic Programming (QP)  Lagrangian multipliers
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Why Is SVM Effective on High Dimensional Data?

 The complexity of trained classifier is characterized by the # of 

support vectors rather than the dimensionality of the data

 The support vectors are the essential or critical training examples —

they lie closest to the decision boundary (MMH)

 If all other training examples are removed and the training is 

repeated, the same separating hyperplane would be found

 The number of support vectors found can be used to compute an 

(upper) bound on the expected error rate of the SVM classifier, which 

is independent of the data dimensionality

 Thus, an SVM with a small number of support vectors can have good 

generalization, even when the dimensionality of the data is high
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SVM—Linearly Inseparable

 Transform the original input data into a higher dimensional 

space

 Search for a linear separating hyperplane in the new space

A1

A2
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SVM:  Different Kernel functions

 Instead of computing the dot product on the transformed 

data, it is math. equivalent to applying a kernel function 

K(Xi, Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj) 

 Typical Kernel Functions

 SVM can also be used for classifying multiple (> 2) classes 

and for regression analysis (with additional parameters)
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Scaling SVM by Hierarchical Micro-Clustering

 SVM is not scalable to the number of data objects in terms of training 

time and memory usage

 H. Yu, J. Yang, and J. Han, “Classifying Large Data Sets Using SVM 

with Hierarchical Clusters”, KDD'03)

 CB-SVM (Clustering-Based SVM)

 Given limited amount of system resources (e.g., memory), 

maximize the SVM performance in terms of accuracy and the 

training speed

 Use micro-clustering to effectively reduce the number of points to 

be considered

 At deriving support vectors, de-cluster micro-clusters near 

“candidate vector” to ensure high classification accuracy

http://www.cs.uiuc.edu/homes/hanj/pdf/kdd03_scalesvm.pdf
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CF-Tree: Hierarchical Micro-cluster

 Read the data set once, construct a statistical summary of the data 

(i.e., hierarchical clusters) given a limited amount of memory

 Micro-clustering: Hierarchical indexing structure

 provide finer samples closer to the boundary and coarser 

samples farther from the boundary
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Selective Declustering: Ensure High Accuracy

 CF tree is a suitable base structure for selective declustering

 De-cluster only the cluster Ei such that

 Di – Ri < Ds, where Di is the distance from the boundary to the 

center point of Ei and Ri is the radius of Ei

 Decluster only the cluster whose subclusters have possibilities to be 

the support cluster of the boundary

 “Support cluster”: The cluster whose centroid is a support vector
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CB-SVM Algorithm: Outline

 Construct two CF-trees from positive and negative data 
sets independently

 Need one scan of the data set

 Train an SVM from the centroids of the root entries

 De-cluster the entries near the boundary into the next 
level

 The children entries de-clustered from the parent 
entries are accumulated into the training set with the 
non-declustered parent entries

 Train an SVM again from the centroids of the entries in 
the training set

 Repeat until nothing is accumulated 
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Accuracy and Scalability on Synthetic Dataset

 Experiments on large synthetic data sets shows better 
accuracy than random sampling approaches and far more 
scalable than the original SVM algorithm
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SVM vs. Neural Network

 SVM

 Deterministic algorithm

 Nice generalization 

properties

 Hard to learn – learned 

in batch mode using 

quadratic programming 

techniques

 Using kernels can learn 

very complex functions

 Neural Network

 Nondeterministic 

algorithm

 Generalizes well but 

doesn’t have strong 

mathematical foundation

 Can easily be learned in 

incremental fashion

 To learn complex 

functions—use multilayer 

perceptron (nontrivial)
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SVM Related Links

 SVM Website: http://www.kernel-machines.org/

 Representative implementations

 LIBSVM: an efficient implementation of SVM, multi-

class classifications, nu-SVM, one-class SVM, including 

also various interfaces with java, python, etc.

 SVM-light: simpler but performance is not better than 

LIBSVM, support only binary classification and only in C 

 SVM-torch: another recent implementation also 

written in C

http://www.kernel-machines.org/
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Associative Classification

 Associative classification: Major steps

 Mine data to find strong associations between frequent patterns 

(conjunctions of attribute-value pairs) and class labels

 Association rules are generated in the form of 

P1 ^ p2 … ^ pl  “Aclass = C” (conf, sup)

 Organize the rules to form a rule-based classifier

 Why effective?  

 It explores highly confident associations among multiple attributes 

and may overcome some constraints introduced by decision-tree 

induction, which considers only one attribute at a time

 Associative classification has been found to be often more accurate 

than some traditional classification methods, such as C4.5
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Typical Associative Classification Methods

 CBA (Classification Based on Associations: Liu, Hsu & Ma, KDD’98)

 Mine possible association rules in the form of

 Cond-set (a set of attribute-value pairs)  class label

 Build classifier: Organize rules according to decreasing precedence 

based on confidence and then support

 CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, 

ICDM’01)

 Classification: Statistical analysis on multiple rules

 CPAR (Classification based on Predictive Association Rules: Yin & Han, SDM’03)

 Generation of predictive rules (FOIL-like analysis) but allow covered 

rules to retain with reduced weight

 Prediction using best k rules

 High efficiency, accuracy similar to CMAR
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Frequent Pattern-Based Classification

 H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative 
Frequent Pattern Analysis for Effective Classification”, 
ICDE'07

 Accuracy issue

 Increase the discriminative power

 Increase the expressive power of the feature space

 Scalability issue

 It is computationally infeasible to generate all feature 
combinations and filter them with an information gain 
threshold

 Efficient method (DDPMine: FPtree pruning): H. Cheng, 
X. Yan, J. Han, and P. S. Yu, "Direct Discriminative 
Pattern Mining for Effective Classification", ICDE'08 

http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde08_hongcheng.pdf
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Frequent Pattern vs. Single Feature

(a) Austral (c) Sonar(b) Cleve

Fig. 1.  Information Gain vs. Pattern Length

The discriminative power of some frequent patterns is 
higher than that of single features.
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Empirical Results
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Feature Selection

 Given a set of frequent patterns, both non-discriminative 

and redundant patterns exist, which can cause overfitting

 We want to single out the discriminative patterns and 

remove redundant ones

 The notion of Maximal Marginal Relevance (MMR) is 

borrowed

 A document has high marginal relevance if it is both 

relevant to the query and contains minimal marginal 

similarity to previously selected documents
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Experimental Results

41
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Scalability Tests
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DDPMine: Branch-and-Bound Search

Association between information 
gain and frequency

a

b

a: constant, a parent 
node

b: variable, a descendent

)sup()sup( parentchild 

)sup()sup( ab 
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DDPMine Efficiency: Runtime

PatClass

Harmony

DDPMinePatClass: ICDE’07 
Pattern 
Classification Alg.
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Lazy vs. Eager Learning

 Lazy vs. eager learning

 Lazy learning (e.g., instance-based learning): Simply 
stores training data (or only minor processing) and 
waits until it is given a test tuple

 Eager learning (the above discussed methods): Given 
a set of training tuples, constructs a classification model 
before receiving new (e.g., test) data to classify

 Lazy: less time in training but more time in predicting

 Accuracy

 Lazy method effectively uses a richer hypothesis space 
since it uses many local linear functions to form an 
implicit global approximation to the target function

 Eager: must commit to a single hypothesis that covers 
the entire instance space
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Lazy Learner: Instance-Based Methods

 Instance-based learning: 

 Store training examples and delay the processing 
(“lazy evaluation”) until a new instance must be 
classified

 Typical approaches

 k-nearest neighbor approach

 Instances represented as points in a Euclidean 
space.

 Locally weighted regression

 Constructs local approximation

 Case-based reasoning

 Uses symbolic representations and knowledge-
based inference
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The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space

 The nearest neighbor are defined in terms of 
Euclidean distance, dist(X1, X2)

 Target function could be discrete- or real- valued

 For discrete-valued, k-NN returns the most common 
value among the k training examples nearest to xq

 Vonoroi diagram: the decision surface induced by 1-
NN for a typical set of training examples
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Discussion on the k-NN Algorithm

 k-NN for real-valued prediction for a given unknown tuple

 Returns the mean values of the k nearest neighbors

 Distance-weighted nearest neighbor algorithm

 Weight the contribution of each of the k neighbors 

according to their distance to the query xq

 Give greater weight to closer neighbors

 Robust to noisy data by averaging k-nearest neighbors

 Curse of dimensionality: distance between neighbors could 

be dominated by irrelevant attributes   

 To overcome it, axes stretch or elimination of the least 

relevant attributes
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Case-Based Reasoning (CBR)

 CBR: Uses a database of problem solutions to solve new problems

 Store symbolic description (tuples or cases)—not points in a Euclidean 

space

 Applications: Customer-service (product-related diagnosis), legal ruling

 Methodology

 Instances represented by rich symbolic descriptions (e.g., function 

graphs)

 Search for similar cases, multiple retrieved cases may be combined

 Tight coupling between case retrieval, knowledge-based reasoning, 

and problem solving

 Challenges

 Find a good similarity metric 

 Indexing based on syntactic similarity measure,  and when failure, 

backtracking, and adapting to additional cases
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Genetic Algorithms (GA)

 Genetic Algorithm: based on an analogy to biological evolution

 An initial population is created consisting of randomly generated rules

 Each rule is represented by a string of bits

 E.g., if A1 and ¬A2 then C2 can be encoded as 100 

 If an attribute has k > 2 values, k bits can be used 

 Based on the notion of survival of the fittest, a new population is 

formed to consist of the fittest rules and their offspring

 The fitness of a rule is represented by its classification accuracy on a 

set of training examples

 Offspring are generated by crossover and mutation

 The process continues until a population P evolves when each rule in P 

satisfies a prespecified threshold

 Slow but easily parallelizable
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Rough Set Approach

 Rough sets are used to approximately or “roughly” define 

equivalent classes 

 A rough set for a given class C is approximated by two sets: a lower 

approximation (certain to be in C) and an upper approximation

(cannot be described as not belonging to C) 

 Finding the minimal subsets (reducts) of attributes for feature 

reduction is NP-hard but a discernibility matrix (which stores the 

differences between attribute values for each pair of data tuples) is 

used to reduce the computation intensity 
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Fuzzy Set 
Approaches

 Fuzzy logic uses truth values between 0.0 and 1.0 to represent the 

degree of membership (such as in a fuzzy membership graph)

 Attribute values are converted to fuzzy values.  Ex.:

 Income, x, is assigned a fuzzy membership value to each of the 

discrete categories {low, medium, high}, e.g. $49K belongs to 

“medium income” with fuzzy value 0.15 but belongs to “high 

income” with fuzzy value 0.96

 Fuzzy membership values do not have to sum to 1.

 Each applicable rule contributes a vote for membership in the 

categories

 Typically, the truth values for each predicted category are summed, 

and these sums are combined
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Multiclass Classification

 Classification involving more than two classes (i.e., > 2 Classes) 

 Method 1. One-vs.-all (OVA): Learn a classifier one at a time 

 Given m classes, train m classifiers: one for each class

 Classifier j: treat tuples in class j as positive & all others as negative

 To classify a tuple X, the set of classifiers vote as an ensemble 

 Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes

 Given m classes, construct m(m-1)/2 binary classifiers

 A classifier is trained using tuples of the two classes

 To classify a tuple X, each classifier votes.  X is assigned to the 

class with maximal vote

 Comparison

 All-vs.-all tends to be superior to one-vs.-all

 Problem: Binary classifier is sensitive to errors, and errors affect 

vote count
56



Error-Correcting Codes for Multiclass Classification

 Originally designed to correct errors during data 
transmission for communication tasks by exploring 
data redundancy

 Example

 A 7-bit codeword associated with classes 1-4
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Class Error-Corr. Codeword

C1 1 1 1 1 1 1 1

C2 0 0 0 0 1 1 1

C3 0 0 1 1 0 0 1

C4 0 1 0 1 0 1 0

 Given a unknown tuple X, the 7-trained classifiers output: 0001010

 Hamming distance: # of different bits between two codewords

 H(X, C1) = 5, by checking # of bits between [1111111] & [0001010]

 H(X, C2) = 3, H(X, C3) = 3, H(X, C4) = 1, thus C4 as the label for X

 Error-correcting codes can correct up to (h-1)/h 1-bit error, where h is 
the minimum Hamming distance between any two codewords 

 If we use 1-bit per class, it is equiv. to one-vs.-all approach, the code 
are insufficient to self-correct

 When selecting error-correcting codes, there should be good row-wise 
and col.-wise separation between the codewords 



Semi-Supervised Classification

 Semi-supervised: Uses labeled and unlabeled data to build a classifier

 Self-training: 

 Build a classifier using the labeled data

 Use it to label the unlabeled data, and those with the most confident 
label prediction are added to the set of labeled data

 Repeat the above process

 Adv: easy to understand; disadv: may reinforce errors

 Co-training: Use two or more classifiers to teach each other

 Each learner uses a mutually independent set of features of each 
tuple to train a good classifier, say f1

 Then f1 and f2 are used to predict the class label for unlabeled data 
X

 Teach each other: The tuple having the most confident prediction 
from f1 is added to the set of labeled data for f2, & vice versa 

 Other methods, e.g., joint probability distribution of features and labels
58



Active Learning

 Class labels are expensive to obtain

 Active learner: query human (oracle) for labels

 Pool-based approach: Uses a pool of unlabeled data

 L: a small subset of D is labeled, U: a pool of unlabeled data in D

 Use a query function to carefully select one or more tuples from U 
and request labels from an oracle (a human annotator)

 The newly labeled samples are added to L, and learn a model

 Goal: Achieve high accuracy using as few labeled data as possible

 Evaluated using learning curves: Accuracy as a function of the number 
of instances queried (# of tuples to be queried should be small)

 Research issue: How to choose the data tuples to be queried?

 Uncertainty sampling: choose the least certain ones

 Reduce version space, the subset of hypotheses consistent w. the 
training data

 Reduce expected entropy over U: Find the greatest reduction in 
the total number of incorrect predictions
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Transfer Learning: Conceptual Framework

 Transfer learning: Extract knowledge from one or more source tasks 

and apply the knowledge to a target task

 Traditional learning: Build a new classifier for each new task

 Transfer learning: Build new classifier by applying existing knowledge 

learned from source tasks

60

Traditional Learning Framework Transfer Learning Framework



Transfer Learning: Methods and Applications

 Applications: Especially useful when data is outdated or distribution 
changes, e.g., Web document classification, e-mail spam filtering

 Instance-based transfer learning:  Reweight some of the data from 
source tasks and use it to learn the target task

 TrAdaBoost (Transfer AdaBoost)

 Assume source and target data each described by the same set of 
attributes (features) & class labels, but rather diff. distributions

 Require only labeling a small amount of target data

 Use source data in training: When a source tuple is misclassified, 
reduce the weight of such tupels so that they will have less effect on 
the subsequent classifier

 Research issues

 Negative transfer: When it performs worse than no transfer at all

 Heterogeneous transfer learning: Transfer knowledge from different 
feature space or multiple source domains

 Large-scale transfer learning
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Summary

 Effective and advanced classification methods  

 Bayesian belief network (probabilistic networks)

 Backpropagation (Neural networks)

 Support Vector Machine (SVM)

 Pattern-based classification

 Other classification methods: lazy learners (KNN, case-based 

reasoning), genetic algorithms, rough set and fuzzy set approaches

 Additional Topics on Classification

 Multiclass classification

 Semi-supervised classification

 Active learning

 Transfer learning
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What Is Prediction?

 (Numerical) prediction is similar to classification

 construct a model

 use model to predict continuous or ordered  value for a given input

 Prediction is different from classification

 Classification refers to predict categorical class label

 Prediction models continuous-valued functions

 Major method for prediction: regression

 model the relationship between one or more independent or 
predictor variables and a dependent or response variable

 Regression analysis

 Linear and multiple regression

 Non-linear regression

 Other regression methods: generalized linear model, Poisson 
regression, log-linear models, regression trees



67

Linear Regression

 Linear regression: involves a response variable y and a single 

predictor variable x

y = w0 + w1 x

where w0 (y-intercept) and w1 (slope) are regression coefficients 

 Method of least squares: estimates the best-fitting straight line

 Multiple linear regression: involves more than one predictor variable

 Training data is of the form (X1, y1), (X2, y2),…, (X|D|, y|D|) 

 Ex. For 2-D data, we may have: y = w0 + w1 x1+ w2 x2

 Solvable by extension of least square method or using SAS, S-Plus

 Many nonlinear functions can be transformed into the above
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 Some nonlinear models can be modeled by a polynomial 
function

 A polynomial regression model can be transformed into 
linear regression model.  For example,

y = w0 + w1 x + w2 x2 + w3 x3

convertible to linear with new variables: x2 = x2, x3= x3

y = w0 + w1 x + w2 x2 + w3 x3 

 Other functions, such as power function, can also be 
transformed to linear model

 Some models are intractable nonlinear (e.g., sum of 
exponential terms)

 possible to obtain least square estimates through 
extensive calculation on more complex formulae

Nonlinear Regression
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 Generalized linear model: 

 Foundation on which linear regression can be applied to modeling 

categorical response variables

 Variance of y is a function of the mean value of y, not a constant

 Logistic regression: models the prob. of some event occurring as a 

linear function of a set of predictor variables

 Poisson regression: models the data that exhibit a Poisson 

distribution

 Log-linear models: (for categorical data)

 Approximate discrete multidimensional prob. distributions 

 Also useful for data compression and smoothing

 Regression trees and model trees

 Trees to predict continuous values rather than class labels

Other Regression-Based Models
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Regression Trees and Model Trees

 Regression tree: proposed in CART system (Breiman et al. 1984)

 CART: Classification And Regression Trees

 Each leaf stores a continuous-valued prediction

 It is the average value of the predicted attribute for the training 

tuples that reach the leaf

 Model tree: proposed by Quinlan (1992)

 Each leaf holds a regression model—a multivariate linear equation 

for the predicted attribute

 A more general case than regression tree

 Regression and model trees tend to be more accurate than linear 

regression when the data are not represented well by a simple linear 

model



71

 Predictive modeling: Predict data values or construct   
generalized linear models based on the database data

 One can only predict value ranges or category distributions

 Method outline:

 Minimal generalization

 Attribute relevance analysis

 Generalized linear model construction

 Prediction

 Determine the major factors which influence the prediction

 Data relevance analysis: uncertainty measurement, 
entropy analysis, expert judgement, etc.

 Multi-level prediction: drill-down and roll-up analysis

Predictive Modeling in Multidimensional Databases
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Prediction: Numerical Data



73

Prediction: Categorical Data
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SVM—Introductory Literature

 “Statistical Learning Theory” by Vapnik: extremely hard to 

understand, containing many errors too.

 C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern 

Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.

 Better than the Vapnik’s book, but still written too hard for 

introduction, and the examples are so not-intuitive 

 The book “An Introduction to Support Vector Machines” by N. 

Cristianini and J. Shawe-Taylor

 Also written hard for introduction, but the explanation about the 

mercer’s theorem is better than above literatures

 The neural network book by Haykins

 Contains one nice chapter of SVM introduction

http://www.kernel-machines.org/papers/Burges98.ps.gz
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Notes about SVM—
Introductory Literature

 “Statistical Learning Theory” by Vapnik: difficult to understand, 

containing many errors.

 C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern 

Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.

 Easier than Vapnik’s book, but still not introductory level; the 

examples are not so intuitive 

 The book An Introduction to Support Vector Machines by Cristianini

and Shawe-Taylor

 Not introductory level, but the explanation about Mercer’s 

Theorem is better than above literatures

 Neural Networks and Learning Machines by Haykin

 Contains a nice chapter on SVM introduction

http://www.kernel-machines.org/papers/Burges98.ps.gz
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Associative Classification Can Achieve High 
Accuracy and Efficiency (Cong et al. SIGMOD05)
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A Closer Look at CMAR

 CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM’01)

 Efficiency: Uses an enhanced FP-tree that maintains the distribution of 
class labels among tuples satisfying each frequent itemset

 Rule pruning whenever a rule is inserted into the tree

 Given two rules, R1 and R2, if the antecedent of R1 is more general 
than that of R2 and conf(R1) ≥ conf(R2), then prune R2

 Prunes rules for which the rule antecedent and class are not 
positively correlated, based on a χ2 test of statistical significance

 Classification based on generated/pruned rules

 If only one rule satisfies tuple X, assign the class label of the rule

 If a rule set S satisfies X, CMAR 

 divides S into groups according to class labels

 uses a weighted χ2 measure to find the strongest group of rules, 
based on the statistical correlation of rules within a group

 assigns X the class label of the strongest group



78

Perceptron & Winnow

• Vector: x, w

• Scalar: x, y, w

Input: {(x1, y1), …}

Output: classification function f(x)

f(xi) > 0 for yi = +1

f(xi) < 0 for yi = -1

f(x) => wx + b = 0

or w1x1+w2x2+b = 0

x1

x2

• Perceptron: update W 
additively

• Winnow: update W 
multiplicatively


