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Review: Basic Cluster Analysis Methods (Chap. 10)

 Cluster Analysis: Basic Concepts

 Group data so that object similarity is high within clusters but low 
across clusters

 Partitioning Methods

 K-means and k-medoids algorithms and their refinements

 Hierarchical Methods

 Agglomerative and divisive method, Birch, Cameleon

 Density-Based Methods

 DBScan, Optics and DenCLu

 Grid-Based Methods

 STING and CLIQUE (subspace clustering)

 Evaluation of Clustering

 Assess clustering tendency, determine # of clusters, and measure 
clustering quality
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K-Means Clustering

K=2
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The initial data set

 Partition objects into k nonempty 

subsets

 Repeat

 Compute centroid (i.e., mean 

point) for each partition 

 Assign each object to the 

cluster of its nearest centroid  

 Until no change



Hierarchical Clustering

 Use distance matrix as clustering criteria.  This method 

does not require the number of clusters k as an input, but 

needs a termination condition 
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Distance between Clusters

 Single link:  smallest distance between an element in one cluster 

and an element in the other, i.e.,  dist(Ki, Kj) = min(tip, tjq)

 Complete link: largest distance between an element in one cluster 

and an element in the other, i.e.,  dist(Ki, Kj) = max(tip, tjq)

 Average: avg distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = avg(tip, tjq)

 Centroid: distance between the centroids of two clusters, i.e.,  

dist(Ki, Kj) = dist(Ci, Cj)

 Medoid: distance between the medoids of two clusters, i.e.,  dist(Ki, 

Kj) = dist(Mi, Mj)

 Medoid: a chosen, centrally located object in the cluster

X X
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BIRCH and the Clustering Feature 
(CF) Tree Structure
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Overall Framework of CHAMELEON

Construct (K-NN)

Sparse Graph Partition the Graph

Merge Partition

Final Clusters

Data Set

K-NN Graph

P and q are connected if 
q is among the top k 
closest neighbors of p

Relative interconnectivity:  
connectivity of c1 and c2

over internal connectivity

Relative closeness: 
closeness of c1 and c2 over 
internal closeness
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Density-Based Clustering: DBSCAN

 Two parameters:

 Eps: Maximum radius of the neighbourhood

 MinPts: Minimum number of points in an Eps-
neighbourhood of that point

 NEps(p): {q belongs to D | dist(p,q) ≤ Eps}

 Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if 

 p belongs to NEps(q)

 core point condition:

|NEps (q)| ≥ MinPts

MinPts = 5

Eps = 1 cm

p

q
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Density-Based Clustering: OPTICS & Its Applications



DENCLU: Center-Defined and Arbitrary
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STING: A Statistical Information Grid Approach

 Wang, Yang and Muntz (VLDB’97)

 The spatial area is divided into rectangular cells

 There are several levels of cells corresponding to different 
levels of resolution
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Evaluation of Clustering Quality

 Assessing Clustering Tendency

 Assess if non-random structure exists in the data by measuring 
the probability that the data is generated by a uniform data 
distribution

 Determine the Number of Clusters

 Empirical method: # of clusters ≈√n/2 

 Elbow method: Use the turning point in the curve of sum of within 
cluster variance w.r.t  # of clusters

 Cross validation method

 Measuring Clustering Quality

 Extrinsic: supervised

 Compare a clustering against the ground truth using certain 
clustering quality measure

 Intrinsic: unsupervised

 Evaluate the goodness of a clustering by considering how well 
the clusters are separated, and how compact the clusters are
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Outline of Advanced Clustering Analysis

 Probability Model-Based Clustering

 Each object may take a probability to belong to a cluster

 Clustering High-Dimensional Data

 Curse of dimensionality: Difficulty of distance measure in high-D 

space

 Clustering Graphs and Network Data

 Similarity measurement and clustering methods for graph and 

networks

 Clustering with Constraints

 Cluster analysis under different kinds of constraints, e.g., that raised 

from background knowledge or spatial distribution of the objects
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Chapter 11. Cluster Analysis: Advanced Methods

 Probability Model-Based Clustering

 Clustering High-Dimensional Data

 Clustering Graphs and Network Data

 Clustering with Constraints

 Summary
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Fuzzy Set and Fuzzy Cluster

 Clustering methods discussed so far

 Every data object is assigned to exactly one cluster

 Some applications may need for fuzzy or soft cluster assignment 

 Ex. An e-game could belong to both entertainment and software

 Methods: fuzzy clusters and probabilistic model-based clusters

 Fuzzy cluster:  A fuzzy set S: FS : X → [0, 1] (value between 0 and 1)

 Example: Popularity of cameras is defined as a fuzzy mapping 

 Then, A(0.05), B(1), C(0.86), D(0.27)
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Fuzzy (Soft) Clustering

 Example: Let cluster features be

 C1 :“digital camera” and “lens”

 C2: “computer“

 Fuzzy clustering 

 k fuzzy clusters C1, …,Ck ,represented as a partition matrix M = [wij]

 P1: for each object oi and cluster Cj, 0 ≤ wij ≤ 1 (fuzzy set)

 P2: for each object oi,                , equal participation in the clustering

 P3: for each cluster Cj ,                    ensures there is no empty cluster

 Let c1, …, ck as the center of the k clusters

 For an object oi, sum of the squared error (SSE), p is a parameter: 

 For a cluster Ci, SSE:

 Measure how well a clustering fits the data:
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Probabilistic Model-Based Clustering

 Cluster analysis is to find hidden categories.

 A hidden category (i.e., probabilistic cluster) is a distribution over the 

data space, which can be mathematically represented using a 

probability density function (or distribution function).

 Ex. 2 categories for digital cameras sold

 consumer line vs. professional line

 density functions f1, f2 for C1, C2

 obtained by probabilistic clustering

 A mixture model assumes that a set of observed objects is a mixture 

of instances from multiple probabilistic clusters, and conceptually 

each observed object is generated independently

 Out task: infer a set of k probabilistic clusters that is mostly likely to 

generate D using the above data generation process
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Model-Based Clustering

 A set C of k probabilistic clusters C1, …,Ck with probability density 

functions f1, …, fk, respectively, and their probabilities ω1, …, ωk.

 Probability of an object o generated by cluster Cj is 

 Probability of o generated by the set of cluster C is

 Since objects are assumed to be generated 

independently, for a data set D = {o1, …, on}, we have,

 Task: Find a set C of k probabilistic clusters s.t. P(D|C) is maximized

 However, maximizing P(D|C) is often intractable since the probability 

density function of a cluster can take an arbitrarily complicated form

 To make it computationally feasible (as a compromise), assume the 

probability density functions being some parameterized distributions
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Univariate Gaussian Mixture Model

 O = {o1, …, on} (n observed objects), Θ = {θ1, …, θk} (parameters of the 

k distributions), and Pj(oi| θj) is the probability that oi is generated from 

the j-th distribution using parameter θj, we have 

 Univariate Gaussian mixture model 

 Assume the probability density function of each cluster follows a 1-

d Gaussian distribution.  Suppose that there are k clusters.

 The probability density function of each cluster are centered at μj

with standard deviation σj, θj, = (μj, σj), we have



The EM (Expectation Maximization) Algorithm

 The k-means algorithm has two steps at each iteration: 

 Expectation Step (E-step): Given the current cluster centers, each 

object is assigned to the cluster whose center is closest to the 

object: An object is expected to belong to the closest cluster

 Maximization Step (M-step): Given the cluster assignment, for 

each cluster, the algorithm adjusts the center so that the sum of 

distance from the objects assigned to this cluster and the new 

center is minimized

 The (EM) algorithm: A framework to approach maximum likelihood or 

maximum a posteriori estimates of parameters in statistical models.

 E-step assigns objects to clusters according to the current fuzzy 

clustering or parameters of probabilistic clusters

 M-step finds the new clustering or parameters that maximize the 

sum of squared error (SSE) or the expected likelihood
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Fuzzy Clustering Using the EM Algorithm

 Initially, let c1 = a and c2 = b

 1st E-step: assign o to c1,w. wt =



 1st M-step:  recalculate the centroids according to the partition matrix, 

minimizing the sum of squared error (SSE)

 Iteratively calculate this until the cluster centers converge or the change 

is small enough
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Univariate Gaussian Mixture Model

 O = {o1, …, on} (n observed objects), Θ = {θ1, …, θk} (parameters of the 

k distributions), and Pj(oi| θj) is the probability that oi is generated from 

the j-th distribution using parameter θj, we have 

 Univariate Gaussian mixture model 

 Assume the probability density function of each cluster follows a 1-

d Gaussian distribution.  Suppose that there are k clusters.

 The probability density function of each cluster are centered at μj

with standard deviation σj, θj, = (μj, σj), we have
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Computing Mixture Models with EM

 Given n objects O = {o1, …, on}, we want to mine a set of parameters Θ

= {θ1, …, θk} s.t.,P(O|Θ) is maximized, where θj = (μj, σj) are the mean and 

standard deviation of the j-th univariate Gaussian distribution 

 We initially assign random values to parameters θj, then iteratively 

conduct the E- and M- steps until converge or sufficiently small change

 At the E-step, for each object oi, calculate the probability that oi belongs 

to each distribution,

 At the M-step, adjust the parameters θj = (μj, σj) so that the expected 

likelihood P(O|Θ) is maximized



Advantages and Disadvantages of Mixture Models

 Strength

 Mixture models are more general than partitioning and fuzzy 

clustering 

 Clusters can be characterized by a small number of parameters

 The results may satisfy the statistical assumptions of the 

generative models

 Weakness

 Converge to local optimal (overcome: run multi-times w. random 

initialization)

 Computationally expensive if the number of distributions is large, 

or the data set contains very few observed data points

 Need large data sets

 Hard to estimate the number of clusters
24
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Chapter 11. Cluster Analysis: Advanced Methods

 Probability Model-Based Clustering

 Clustering High-Dimensional Data

 Clustering Graphs and Network Data

 Clustering with Constraints

 Summary
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Clustering High-Dimensional Data

 Clustering high-dimensional data (How high is high-D in clustering?)

 Many applications: text documents, DNA micro-array data

 Major challenges: 

 Many irrelevant dimensions may mask clusters

 Distance measure becomes meaningless—due to equi-distance

 Clusters may exist only in some subspaces

 Methods

 Subspace-clustering:  Search for clusters existing in subspaces of 

the given high dimensional data space

 CLIQUE, ProClus, and bi-clustering approaches

 Dimensionality reduction approaches: Construct a much lower 

dimensional space and search for clusters there (may construct new 

dimensions by combining some dimensions in the original data)

 Dimensionality reduction methods and spectral clustering



Traditional Distance Measures May Not 
Be Effective on High-D Data

 Traditional distance measure could be dominated by noises in many 

dimensions

 Ex. Which pairs of customers are more similar?

 By Euclidean distance, we get, 

 despite Ada and Cathy look more similar

 Clustering should not only consider dimensions but also attributes 

(features)

 Feature transformation: effective if most dimensions are relevant 

(PCA & SVD useful when features are highly correlated/redundant)

 Feature selection: useful to find a subspace where the data have 

nice clusters
27
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The Curse of Dimensionality
(graphs adapted from Parsons et al. KDD Explorations 2004)

 Data in only one dimension is relatively 

packed

 Adding a dimension “stretch” the  

points across that dimension, making 

them further apart

 Adding more dimensions will make the 

points further apart—high dimensional 

data is extremely sparse

 Distance measure becomes 

meaningless—due to equi-distance
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Why Subspace Clustering?
(adapted from Parsons et al. SIGKDD Explorations 2004)

 Clusters may exist only in some subspaces

 Subspace-clustering: find clusters in all the subspaces



Subspace Clustering Methods

 Subspace search methods: Search various subspaces to 

find clusters 

 Bottom-up approaches

 Top-down approaches

 Correlation-based clustering methods

 E.g., PCA based approaches

 Bi-clustering methods

 Optimization-based methods

 Enumeration methods



Subspace Clustering Method (I): 
Subspace Search Methods

 Search various subspaces to find clusters 

 Bottom-up approaches

 Start from low-D subspaces and search higher-D subspaces only 

when there may be clusters in such subspaces

 Various pruning techniques to reduce the number of higher-D 

subspaces to be searched

 Ex. CLIQUE (Agrawal et al. 1998)

 Top-down approaches

 Start from full space and search smaller subspaces recursively

 Effective only if the locality assumption holds: restricts that the 

subspace of a cluster can be determined by the local neighborhood

 Ex. PROCLUS (Aggarwal et al. 1999): a k-medoid-like method
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Subspace Clustering Method (II): 
Correlation-Based Methods

 Subspace search method: similarity based on distance or 

density

 Correlation-based method: based on advanced correlation 

models

 Ex. PCA-based approach:

 Apply PCA (for Principal Component Analysis) to derive a 

set of new, uncorrelated dimensions, 

 then mine clusters in the new space or its subspaces

 Other space transformations:

 Hough transform 

 Fractal dimensions
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Subspace Clustering Method (III): 
Bi-Clustering Methods

 Bi-clustering: Cluster both objects and attributes  

simultaneously (treat objs and attrs in symmetric way)

 Four requirements:

 Only a small set of objects participate in a cluster

 A cluster only involves a small number of attributes

 An object may participate in multiple clusters, or 

does not participate in any cluster at all

 An attribute may be involved in multiple clusters, or 

is not involved in any cluster at all

34

 Ex 1. Gene expression or microarray data: a gene 
sample/condition matrix. 

 Each element in the matrix, a real number, 
records the expression level of a gene under a 
specific condition

 Ex. 2. Clustering customers and products

 Another bi-clustering problem



Types of Bi-clusters

 Let A = {a1, ..., an} be a set of genes, B = {b1, …, bn} a set of conditions

 A bi-cluster: A submatrix where genes and conditions follow some 

consistent patterns

 4 types of bi-clusters (ideal cases)

 Bi-clusters with constant values:

 for any i in I and j in J, eij = c

 Bi-clusters with constant values on rows:

 eij = c + αi 

 Also, it can be constant values on columns

 Bi-clusters with coherent values (aka. pattern-based clusters)

 eij = c + αi + βj

 Bi-clusters with coherent evolutions on rows

 eij (ei1j1− ei1j2)(ei2j1− ei2j2) ≥ 0

 i.e., only interested in the up- or down- regulated changes across 

genes or conditions without constraining on the exact values
35



Bi-Clustering Methods

 Real-world data is noisy: Try to find approximate bi-clusters

 Methods: Optimization-based methods vs. enumeration methods

 Optimization-based methods

 Try to find a submatrix at a time that achieves the best significance 

as a bi-cluster

 Due to the cost in computation, greedy search is employed to find 

local optimal bi-clusters

 Ex. δ-Cluster Algorithm (Cheng and Church, ISMB’2000)

 Enumeration methods

 Use a tolerance threshold to specify the degree of noise allowed in 

the bi-clusters to be mined

 Then try to enumerate all submatrices as bi-clusters that satisfy the 

requirements

 Ex. δ-pCluster Algorithm (H. Wang et al.’ SIGMOD’2002, MaPle: 

Pei et al., ICDM’2003)
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Bi-Clustering for Micro-Array Data Analysis

 Left figure: Micro-array “raw” data shows 3 genes and their 

values in a multi-D space: Difficult to find their patterns

 Right two: Some subsets of dimensions form nice shift and 

scaling patterns

 No globally defined similarity/distance measure

 Clusters may not be exclusive

 An object can appear in multiple clusters



Bi-Clustering (I): δ-Bi-Cluster

 For a submatrix I x J, the mean of the i-th row:

 The mean of the j-th column:

 The mean of all elements in the submatrix is

 The quality of the submatrix as a bi-cluster can be measured by the mean 

squared residue value

 A submatrix I x J is δ-bi-cluster if H(I x J) ≤ δ where δ ≥ 0 is a threshold. 

When δ = 0, I x J is a perfect bi-cluster with coherent values. By setting δ > 0, 

a user can specify the tolerance of average noise per element against a 

perfect bi-cluster

 residue(eij) = eij − eiJ − eIj + eIJ
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Bi-Clustering (I): The δ-Cluster Algorithm

 Maximal δ-bi-cluster is a δ-bi-cluster I x J such that there does not exist 
another δ-bi-cluster I′ x J′ which contains I x J

 Computing is costly: Use heuristic greedy search to obtain local optimal clusters

 Two phase computation: deletion phase and additional phase

 Deletion phase: Start from the whole matrix, iteratively remove rows and 
columns while the mean squared residue of the matrix is over δ

 At each iteration, for each row/column, compute the mean squared residue:

 Remove the row or column of the largest mean squared residue

 Addition phase: 

 Expand iteratively the δ-bi-cluster I x J obtained in the deletion phase as 
long as the δ-bi-cluster requirement is maintained

 Consider all the rows/columns not involved in the current bi-cluster I x J by 
calculating their mean squared residues

 A row/column of the smallest mean squared residue is added into the 
current δ-bi-cluster

 It finds only one δ-bi-cluster, thus needs to run multiple times: replacing the 
elements in the output bi-cluster by random numbers 
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Bi-Clustering (II): δ-pCluster 

 Enumerating all bi-clusters (δ-pClusters) [H. Wang, et al., Clustering by pattern 

similarity in large data sets. SIGMOD’02]

 Since a submatrix I x J is a bi-cluster with (perfect) coherent values iff ei1j1 − ei2j1

= ei1j2 − ei2j2. For any 2 x 2 submatrix of I x J, define p-score

 A submatrix I x J is a δ-pCluster (pattern-based cluster) if the p-score of every 2 

x 2 submatrix of I x J is at most δ, where δ ≥ 0 is a threshold specifying a user's 

tolerance of noise against a perfect bi-cluster

 The p-score controls the noise on every element in a bi-cluster, while the mean 

squared residue captures the average noise

 Monotonicity: If I x J is a δ-pClusters, every x x y (x,y ≥ 2) submatrix of I x J is 
also a δ-pClusters. 

 A δ-pCluster is maximal if no more row or column can be added into the cluster 
and retain δ-pCluster: We only need to compute all maximal δ-pClusters.
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MaPle: Efficient Enumeration of δ-pClusters

 Pei et al., MaPle: Efficient enumerating all maximal δ-

pClusters.  ICDM'03

 Framework: Same as pattern-growth in frequent pattern 

mining (based on the downward closure property)

 For each condition combination J, find the maximal subsets 

of genes I such that I x J is a δ-pClusters

 If I x J is not a submatrix of another δ-pClusters

 then I x J is a maximal δ-pCluster.

 Algorithm is very similar to mining frequent closed itemsets

 Additional advantages of δ-pClusters:

 Due to averaging of δ-cluster, it may contain outliers 

but still within δ-threshold

 Computing bi-clusters for scaling patterns, take 

logarithmic on

will lead to the p-score form
41
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Dimensionality-Reduction Methods

 Dimensionality reduction: In some situations, it is 

more effective to construct a new space instead 

of using some subspaces of the original data

42

 Ex. To cluster the points in the right figure, any subspace of the original 

one, X and Y, cannot help, since all the three clusters will be projected 

into the overlapping areas in X and Y axes.

 Construct a new dimension as the dashed one, the three clusters 

become apparent when the points projected into the new dimension

 Dimensionality reduction methods

 Feature selection and extraction: But may not focus on clustering 

structure finding

 Spectral clustering: Combining feature extraction and clustering (i.e., 

use the spectrum of the similarity matrix of the data to perform 

dimensionality reduction for clustering in fewer dimensions)

 Normalized Cuts (Shi and Malik, CVPR’97 or PAMI’2000)

 The Ng-Jordan-Weiss algorithm (NIPS’01)



Spectral Clustering: 
The Ng-Jordan-Weiss (NJW) Algorithm

 Given a set of objects o1, …, on, and the distance between each pair 
of objects, dist(oi, oj), find the desired number k of clusters

 Calculate an affinity matrix W, where σ is a scaling parameter that 
controls how fast the affinity Wij decreases as dist(oi, oj) increases.    
In NJW, set W ij = 0

 Derive a matrix A = f(W). NJW defines a matrix D to be a diagonal 
matrix s.t. Dii is the sum of the i-th row of W, i.e.,

Then, A is set to

 A spectral clustering method finds the k leading eigenvectors of A 

 A vector v is an eigenvector of matrix A if Av = λv, where λ is the 
corresponding eigen-value

 Using the k leading eigenvectors, project the original data into the 
new space defined by the k leading eigenvectors, and run a 
clustering algorithm, such as k-means, to find k clusters

 Assign the original data points to clusters according to how the 
transformed points are assigned in the clusters obtained
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Spectral Clustering: Illustration and Comments

 Spectral clustering: Effective in tasks like image processing 

 Scalability challenge: Computing eigenvectors on a large matrix is costly

 Can be combined with other clustering methods, such as bi-clustering
44
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 Clustering with Constraints

 Summary
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Clustering Graphs and Network Data

 Applications

 Bi-partite graphs, e.g., customers and products, 
authors and conferences

 Web search engines, e.g., click through graphs and 
Web graphs

 Social networks, friendship/coauthor graphs

 Similarity measures

 Geodesic distances

 Distance based on random walk (SimRank)

 Graph clustering methods

 Minimum cuts: FastModularity (Clauset, Newman & 
Moore, 2004)

 Density-based clustering: SCAN (Xu et al., KDD’2007) 
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Similarity Measure (I):  Geodesic Distance

 Geodesic distance (A, B): length (i.e., # of edges) of the shortest path 

between  A and B (if not connected, defined as infinite)

 Eccentricity of v, eccen(v): The largest geodesic distance between v 

and any other vertex u ∈ V − {v}.  

 E.g., eccen(a) = eccen(b) = 2; eccen(c) = eccen(d) = eccen(e) = 3

 Radius of graph G:  The minimum eccentricity of all vertices, i.e., the 

distance between the “most central point” and the “farthest border” 

 r = min v∈V eccen(v)

 E.g., radius (g) = 2

 Diameter of graph G: The maximum eccentricity of all vertices, i.e., the 

largest distance between any pair of vertices in G

 d = max v∈V eccen(v)

 E.g., diameter (g) = 3

 A peripheral vertex is a vertex that achieves the diameter.

 E.g., Vertices c, d, and e are peripheral vertices
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SimRank: Similarity Based on Random 
Walk and Structural Context

 SimRank: structural-context similarity, i.e., based on the similarity of its 

neighbors

 In a directed graph G = (V,E),

 individual in-neighborhood of v: I(v) = {u | (u, v) ∈ E}

 individual out-neighborhood of v: O(v) = {w | (v, w) ∈ E}

 Similarity in SimRank: 

 Initialization:

 Then we can compute si+1 from si based on the definition

 Similarity based on random walk: in a strongly connected component

 Expected distance:

 Expected meeting distance:

 Expected meeting probability:

48

P[t] is the probability of the tour



Graph Clustering: Sparsest Cut

 G = (V,E). The cut set of a cut is the set 

of edges {(u, v) ∈ E | u ∈ S, v ∈ T } and 

S and T are in two partitions

 Size of the cut: # of edges in the cut set

 Min-cut (e.g., C1) is not a good partition

 A better measure: Sparsity:

 A cut is sparsest if its sparsity is not greater than that of any other cut

 Ex. Cut C2 = ({a, b, c, d, e, f, l}, {g, h, i, j, k}) is the sparsest cut

 For k clusters, the modularity of a clustering assesses the quality of the 

clustering: 

 The modularity of a clustering of a graph is the difference between the 

fraction of all edges that fall into individual clusters and the fraction that 

would do so if the graph vertices were randomly connected

 The optimal clustering of graphs maximizes the modularity

li: # edges between vertices in the i-th cluster
di: the sum of the degrees of the vertices in the i-th cluster
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Graph Clustering: Challenges of Finding Good Cuts

 High computational cost

 Many graph cut problems are computationally expensive

 The sparsest cut problem is NP-hard

 Need to tradeoff between efficiency/scalability and quality 

 Sophisticated graphs

 May involve weights and/or cycles.

 High dimensionality

 A graph can have many vertices. In a similarity matrix, a vertex is 

represented as a vector (a row in the matrix) whose 

dimensionality is the number of vertices in the graph

 Sparsity

 A large graph is often sparse, meaning each vertex on average 

connects to only a small number of other vertices

 A similarity matrix from a large sparse graph can also be sparse
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Two Approaches for Graph Clustering

 Two approaches for clustering graph data

 Use generic clustering methods for high-dimensional data

 Designed specifically for clustering graphs

 Using clustering methods for high-dimensional data

 Extract a similarity matrix from a graph using a similarity measure

 A generic clustering method can then be applied on the similarity 

matrix to discover clusters

 Ex. Spectral clustering: approximate optimal graph cut solutions

 Methods specific to graphs

 Search the graph to find well-connected components as clusters

 Ex. SCAN (Structural Clustering Algorithm for Networks)

 X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “SCAN: A 

Structural Clustering Algorithm for Networks”, KDD'07
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SCAN: Density-Based Clustering of 
Networks

 How many clusters?

 What size should they be?

 What is the best partitioning?

 Should some points be 

segregated?

52

An Example Network

 Application: Given simply information of who associates with whom, 

could one identify clusters of individuals with common interests or 

special relationships (families, cliques, terrorist cells)?



A Social Network Model

 Cliques, hubs and outliers

 Individuals in a tight social group, or clique, know many of the 

same people, regardless of the size of the group

 Individuals who are hubs know many people in different groups 

but belong to no single group.  Politicians, for example bridge 

multiple groups

 Individuals who are outliers reside at the margins of society. 

Hermits, for example, know few people and belong to no group

 The Neighborhood of a Vertex

53

v

 Define () as the immediate 

neighborhood of a vertex (i.e. the set 

of people that an individual knows )



Structure Similarity

 The desired features tend to be captured by a measure 

we call Structural Similarity

 Structural similarity is large for members of a clique 

and small for hubs and outliers
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Structural Connectivity [1]

 -Neighborhood:

 Core:

 Direct structure reachable:

 Structure reachable: transitive closure of direct structure 

reachability

 Structure connected:

}),(|)({)(   wvvwvN

  |)(|)(, vNvCORE

)()(),( ,, vNwvCOREwvDirRECH  

),(),(:),( ,,, wuRECHvuRECHVuwvCONNECT  

[1] M. Ester,  H. P. Kriegel, J. Sander, & X. Xu (KDD'96) “A Density-Based 

Algorithm for Discovering Clusters in  Large Spatial Databases
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Structure-Connected Clusters

 Structure-connected cluster C

 Connectivity:

 Maximality:

 Hubs:

 Not belong to any cluster

 Bridge to many clusters

 Outliers:

 Not belong to any cluster

 Connect to less clusters

),(:, , wvCONNECTCwv 

CwwvREACHCvVwv  ),(:, ,

hub

outlier
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Running Time

 Running time = O(|E|)

 For sparse networks = O(|V|)

[2] A. Clauset, M. E. J. Newman, & C. Moore, Phys. Rev. E 70, 066111 (2004).
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Chapter 11. Cluster Analysis: Advanced Methods

 Probability Model-Based Clustering

 Clustering High-Dimensional Data

 Clustering Graphs and Network Data

 Clustering with Constraints

 Summary
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Why Constraint-Based Cluster Analysis?

 Need user feedback: Users know their applications the best

 Less parameters but more user-desired constraints, e.g., an 
ATM allocation problem: obstacle & desired clusters
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Categorization of Constraints

 Constraints on instances: specifies how a pair or a set of instances 

should be grouped in the cluster analysis

 Must-link vs. cannot link constraints 

 must-link(x, y): x and y should be grouped into one cluster

 Constraints can be defined using variables, e.g., 

 cannot-link(x, y) if dist(x, y) > d

 Constraints on clusters: specifies a requirement on the clusters

 E.g., specify the min # of objects in a cluster, the max diameter of a 

cluster, the shape of a cluster (e.g., a convex), # of clusters (e.g., k)

 Constraints on similarity measurements: specifies a requirement that 

the similarity calculation must respect

 E.g., driving on roads, obstacles (e.g., rivers, lakes)

 Issues: Hard vs. soft constraints; conflicting or redundant constraints
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Constraint-Based Clustering Methods (I):
Handling Hard Constraints

 Handling hard constraints: Strictly respect the constraints in cluster 

assignments

 Example: The COP-k-means algorithm 

 Generate super-instances for must-link constraints

 Compute the transitive closure of the must-link constraints

 To represent such a subset, replace all those objects in the 

subset by the mean.

 The super-instance also carries a weight, which is the number 

of objects it represents

 Conduct modified k-means clustering to respect cannot-link 

constraints

 Modify the center-assignment process in k-means to a nearest 

feasible center assignment

 An object is assigned to the nearest center so that the 

assignment respects all cannot-link constraints



Constraint-Based Clustering Methods (II):
Handling Soft Constraints

 Treated as an optimization problem:  When a clustering violates a soft 
constraint, a penalty is imposed on the clustering

 Overall objective: Optimizing the clustering quality, and minimizing the 
constraint violation penalty

 Ex. CVQE (Constrained Vector Quantization Error) algorithm: Conduct 
k-means clustering while enforcing constraint violation penalties

 Objective function: Sum of distance used in k-means, adjusted by the 
constraint violation penalties

 Penalty of a must-link violation

 If objects x and y must-be-linked but they are assigned to two 
different centers, c1 and c2, dist(c1, c2) is added to the objective 
function as the penalty

 Penalty of a cannot-link violation

 If objects x and y cannot-be-linked but they are assigned to a 
common center c, dist(c, c′), between c and c′ is added to the 
objective function as the penalty, where c′ is the closest cluster 
to c that can accommodate x or y

75



76

Speeding Up Constrained Clustering

 It is costly to compute some constrained 

clustering 

 Ex. Clustering with obstacle objects:  Tung, 

Hou, and Han. Spatial clustering in the 

presence of obstacles, ICDE'01

 K-medoids is more preferable since k-means 

may locate the ATM center in the middle of a 

lake

 Visibility graph and shortest path 

 Triangulation and micro-clustering

 Two kinds of join indices (shortest-paths) 

worth pre-computation

 VV index: indices for any pair of obstacle 

vertices

 MV index: indices for any pair of micro-

cluster and obstacle indices 
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An Example: Clustering With Obstacle Objects

Taking obstacles into accountNot Taking obstacles into account
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User-Guided Clustering: A Special Kind of 
Constraints

name

office

position

Professor

course-id

name

area

course

semester

instructor

office

position

Student

name

student

course

semester

unit

Register

grade

professor

student

degree

Advise

name

Group

person

group

Work-In

area

year

conf

Publication

title

title

Publish

author

Target of 

clustering

User hint

CourseOpen-course

 X. Yin, J. Han, P. S. Yu, “Cross-Relational Clustering with User's Guidance”, 
KDD'05 

 User usually has a goal of clustering, e.g., clustering students by research area

 User specifies his clustering goal to CrossClus
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Comparing with Classification

 User-specified feature (in the form 

of attribute) is used as a hint, not 

class labels

 The attribute may contain too 

many or too few distinct values, 

e.g., a user may want to 

cluster students into 20 

clusters instead of 3

 Additional features need to be 

included in cluster analysisAll tuples for clustering

User hint
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Comparing with Semi-Supervised Clustering

 Semi-supervised clustering: User provides a training set 

consisting of “similar” (“must-link) and “dissimilar” 

(“cannot link”) pairs of objects

 User-guided clustering: User specifies an attribute as a 

hint, and more relevant features are found for clustering

A
ll 

tu
p

le
s
 f
o

r 
c
lu

s
te

ri
n

g

Semi-supervised clustering

All tuples for clustering

User-guided clustering

x
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Why Not Semi-Supervised Clustering?

 Much information (in multiple relations) is needed to judge 

whether two tuples are similar

 A user may not be able to provide a good training set

 It is much easier for a user to specify an attribute as a hint, 

such as a student’s research area

Tom Smith SC1211 TA

Jane Chang BI205 RA

Tuples to be compared

User hint
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CrossClus: An Overview

 Measure similarity between features by how they group 

objects into clusters

 Use a heuristic method to search for pertinent features

 Start from user-specified feature and gradually 

expand search range

 Use tuple ID propagation to create feature values

 Features can be easily created during the expansion 

of search range, by propagating IDs

 Explore three clustering algorithms: k-means, k-medoids, 

and hierarchical clustering
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Multi-Relational Features

 A multi-relational feature is defined by: 

 A join path, e.g., Student → Register → OpenCourse → Course

 An attribute, e.g., Course.area

 (For numerical feature) an aggregation operator, e.g., sum or average

 Categorical feature f = [Student → Register → OpenCourse → Course, 

Course.area, null]

Tuple Areas of courses

DB AI TH

t1 5 5 0

t2 0 3 7

t3 1 5 4

t4 5 0 5

t5 3 3 4

areas of courses of each student

Tuple Feature f

DB AI TH

t1 0.5 0.5 0

t2 0 0.3 0.7

t3 0.1 0.5 0.4

t4 0.5 0 0.5

t5 0.3 0.3 0.4

Values of feature f f(t1)

f(t2)

f(t3)

f(t4)

f(t5)

DB

AI

TH
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Representing Features

 Similarity between tuples t1 and t2 w.r.t. categorical feature f

 Cosine similarity between vectors f(t1) and f(t2) 

 Most important information of a 
feature f is how f groups tuples into 
clusters

 f is represented by similarities 
between every pair of tuples 
indicated by f

 The horizontal axes are the tuple 
indices, and the vertical axis is the 
similarity

 This can be considered as a vector 
of N x N dimensions

Similarity vector Vf

 
   

   












L

k

k

L

k

k

L

k

kk

f

ptfptf

ptfptf

tt

1

2

2

1

2

1

1

21

21

..

..

,sim



85

Similarity Between Features

Feature f (course) Feature g (group)

DB AI TH Info sys Cog sci Theory

t1 0.5 0.5 0 1 0 0

t2 0 0.3 0.7 0 0 1

t3 0.1 0.5 0.4 0 0.5 0.5

t4 0.5 0 0.5 0.5 0 0.5

t5 0.3 0.3 0.4 0.5 0.5 0

Values of Feature f and g

Similarity between two features –

cosine similarity of two vectors

Vf

Vg

 
gf

gf

VV

VV
gfsim


,
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Computing Feature Similarity
Tuples

Feature f Feature g

DB

AI

TH

Info sys

Cog sci

Theory

Similarity between feature 

values w.r.t. the tuples
sim(fk,gq)=Σi=1 to N f(ti).pk∙g(ti).pq

DB Info sys

     
2

1 11 1

,,, 
  


l

k

m

q

qk

N

i

N

j

jigjif

gf gfsimttsimttsimVV Tuple similarities, 

hard to compute

Feature value similarities, 

easy to compute

DB

AI

TH

Info sys

Cog sci

Theory

Compute similarity 

between each pair of 

feature values by one 

scan on data
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Searching for Pertinent Features

 Different features convey different aspects of information

 Features conveying same aspect of information usually 

cluster tuples in more similar ways

 Research group areas vs. conferences of publications

 Given user specified feature

 Find pertinent features by computing feature similarity

Research group area

Advisor

Conferences of papers

Research area

GPA

Number of papers

GRE score

Academic Performances

Nationality

Permanent address

Demographic info
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Heuristic Search for Pertinent Features

Overall procedure

1. Start from the user-

specified feature

2. Search in neighborhood 

of existing pertinent 

features

3. Expand search range 

gradually

name

office

position

Professor

office

position

Student

name

student

course

semester

unit

Register

grade

professor

student

degree

Advise

person

group

Work-In

name

Group

area
year

conf

Publication

title

title

Publish

author

Target of 

clustering

User hint

course-id

name

area

Course

course

semester

instructor

Open-course

1

2

 Tuple ID propagation is used to create multi-relational features

 IDs of target tuples can be propagated along any join path, from 

which we can find tuples joinable with each target tuple
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Clustering with Multi-Relational Features

 Given a set of L pertinent features  f1, …, fL, similarity 

between two tuples

 Weight of a feature is determined in feature search by 

its similarity with other pertinent features

 Clustering methods

 CLARANS [Ng & Han 94], a scalable clustering 

algorithm for non-Euclidean space

 K-means

 Agglomerative hierarchical clustering
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Experiments: Compare CrossClus with

 Baseline: Only use the user specified feature

 PROCLUS [Aggarwal, et al. 99]:  a state-of-the-art 

subspace clustering algorithm

 Use a subset of features for each cluster

 We convert relational database to a table by 

propositionalization

 User-specified feature is forced to be used in every 

cluster

 RDBC [Kirsten and Wrobel’00]

 A representative ILP clustering algorithm

 Use neighbor information of objects for clustering

 User-specified feature is forced to be used
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Measure of Clustering Accuracy

 Accuracy

 Measured by manually labeled data

 We manually assign tuples into clusters according 

to their properties (e.g., professors in different 

research areas)

 Accuracy of clustering: Percentage of pairs of tuples in 

the same cluster that share common label

 This measure favors many small clusters

 We let each approach generate the same number of 

clusters
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DBLP Dataset
Clustering Accurarcy - DBLP
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Chapter 11. Cluster Analysis: Advanced Methods

 Probability Model-Based Clustering

 Clustering High-Dimensional Data

 Clustering Graphs and Network Data

 Clustering with Constraints

 Summary
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Summary

 Probability Model-Based Clustering

 Fuzzy clustering

 Probability-model-based clustering

 The EM algorithm

 Clustering High-Dimensional Data

 Subspace clustering: bi-clustering methods

 Dimensionality reduction: Spectral clustering

 Clustering Graphs and Network Data

 Graph clustering: min-cut vs. sparsest cut

 High-dimensional clustering methods

 Graph-specific clustering methods, e.g., SCAN

 Clustering with Constraints

 Constraints on instance objects, e.g., Must link vs. Cannot Link

 Constraint-based clustering algorithms
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Conceptual Clustering

 Conceptual clustering

 A form of clustering in machine learning

 Produces a classification scheme for a set of unlabeled 

objects

 Finds characteristic description for each concept (class)

 COBWEB (Fisher’87)

 A popular a simple method of incremental conceptual 

learning

 Creates a hierarchical clustering in the form of a 

classification tree

 Each node refers to a concept and contains a 

probabilistic description of that concept
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COBWEB Clustering Method

A classification tree
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More on Conceptual Clustering

 Limitations of COBWEB

 The assumption that the attributes are independent of each other is 

often too strong because correlation may exist

 Not suitable for clustering large database data – skewed tree and 

expensive probability distributions

 CLASSIT

 an extension of COBWEB for incremental clustering of continuous 

data

 suffers similar problems as COBWEB 

 AutoClass (Cheeseman and Stutz, 1996)

 Uses Bayesian statistical analysis to estimate the number of 

clusters

 Popular in industry
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Neural Network Approaches

 Neural network approaches

 Represent each cluster as an exemplar, acting as a 

“prototype” of the cluster

 New objects are distributed to the cluster whose 

exemplar is the most similar according to some 

distance measure

 Typical methods

 SOM (Soft-Organizing feature Map)

 Competitive learning

 Involves a hierarchical architecture of several units 

(neurons)

 Neurons compete in  a “winner-takes-all” fashion for 

the object currently being presented
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Self-Organizing Feature Map (SOM)

 SOMs, also called topological ordered maps, or Kohonen Self-

Organizing Feature Map (KSOMs) 

 It maps all the points in a high-dimensional source space into a 2 to 3-d 

target space, s.t., the distance and proximity relationship (i.e., topology) 

are preserved as much as possible

 Similar to k-means: cluster centers tend to lie in a low-dimensional 

manifold in the feature space

 Clustering is performed by having several units competing for the 

current object

 The unit whose weight vector is closest to the current object wins

 The winner and its neighbors learn by having their weights adjusted

 SOMs are believed to resemble processing that can occur in the brain

 Useful for visualizing high-dimensional data in 2- or 3-D space
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Web Document Clustering Using SOM

 The result of 

SOM clustering 

of 12088 Web 

articles

 The picture on 

the right: drilling 

down on the 

keyword 

“mining”

 Based on 

websom.hut.fi 

Web page


